The Influence of Fiber Treatment and Matrix Type on the Impregnation Quality of Carbon Fiber Reinforced Thermoplastics

Cahyo Budiyantoro, Harini Sosiati, Kevin Atila Syahputra, Sudarisman Sudarisman

Abstract


One of the main issues with Carbon Fiber Reinforced Thermoplastics (CFRTP) is the poor impregnation quality of the matrix on carbon fiber due to the high viscosity of the thermoplastic. Impregnation quality can significantly affect the mechanical properties of the composite. This study aims to compare the impregnation abilities of various types of thermoplastic matrices on carbon fiber. The matrices used in this study are HDPE, PC, and PET. Three variations of carbon fiber treatment were employed: the first variation involved immersion in liquid nitrogen at -196°C, the second variation included heating in an electric furnace at 600°C followed by rapid cooling in liquid nitrogen, and the third variation utilized treatment with a silane coupling agent. The research findings demonstrate that composites comprising a Polycarbonate matrix and carbon fiber reinforcement, treated with a silane coupling agent, exhibit superior impregnation quality, as evidenced by an Interfacial Shear Strength (IFSS) value of 9.34 MPa.. The lowest impregnation quality was observed in HDPE reinforced with carbon fiber that had been heated and rapidly cooled, with an IFSS of 5.52 MPa.

Keywords


Interfacial shear strength; CFRTP; shock cooling; cryogenic; silane coupling agent

Full Text:

PDF

References


Budiyantoro, C., Rochardjo, H. S. B., & Nugroho, G. (2020). Effects of processing variables of extrusion–pultrusion method on the impregnation quality of thermoplastic composite filaments. Polymers, 12(12), 1–24. https://doi.org/10.3390/polym12122833

Budiyantoro, C., Rochardjo, H. S. B., & Nugroho, G. (2021). Overmolding of hybrid long and short carbon fiber polypropylene composite: Optimizing processing parameters. Journal of Manufacturing and Materials Processing, 5(4). https://doi.org/10.3390/jmmp5040132

Chandran, M. S., & Padmanabhan, K. (2019). Microbond fibre bundle pullout technique to evaluate the interfacial adhesion of polyethylene and polypropylene self reinforced composites. Applied Adhesion Science, 7(1). https://doi.org/10.1186/s40563-019-0121-z

Chang, S. H., Hwang, J. R., & Doong, J. L. (2000). Optimization of the injection molding process of short glass fiber reinforced polycarbonate composites using grey relational analysis. Journal of Materials Processing Technology, 97(1–3), 186–193. https://doi.org/10.1016/S0924-0136(99)00375-1

Chen, J., Cui, Y., Liu, Y., & Cui, J. (2023). Design and Parametric Optimization of the Injection Molding Process Using Statistical Analysis and Numerical Simulation. Processes, 11(414), 1–17.

Dai, Z., Zhang, B., Shi, F., Li, M., Zhang, Z., & Gu, Y. (2011). Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion. Applied Surface Science, 257(20), 8457–8461. https://doi.org/10.1016/j.apsusc.2011.04.129

Jia, Y. Y., Yan, W., & Liu, H. Y. (2011). Numetrical study on carbon fibre pullout using a cohesive zone model. ICCM International Conferences on Composite Materials, 1–6.

Kamps, J. H., Scheffler, C., Simon, F., van der Heijden, R., & Verghese, N. (2018). Functional polycarbonates for improved adhesion to carbon fibre. Composites Science and Technology, 167, 448–455. https://doi.org/10.1016/j.compscitech.2018.08.035

Käppler, I., Hund, R. D., & Cherif, C. (2014). Surface modification of carbon fibres using plasma technique. Autex Research Journal, 14(1), 34–38. https://doi.org/10.2478/v10304-012-0048-y

Koubaa, S., Le Corre, S., & Burtin, C. (2013). Thermoplastic pultrusion process: Modeling and optimal conditions for fibers impregnation. Journal of Reinforced Plastics and Composites, 32(17), 1285–1294. https://doi.org/10.1177/0731684413489851

Lee, J. S., & Kang, T. J. (1997). Changes in physico-chemical and morphological properties of carbon fiber by surface treatment. Carbon, 35(2), 209–216. https://doi.org/10.1016/S0008-6223(96)00138-8

Osarenmwinda, J. O., & Olodu, D. D. (2018). Optimization of injection moulding process parameters in the moulding of High Density Polyethylene (HDPE). Journal of Applied Sciences and Environmental Management, 22(2), 203. https://doi.org/10.4314/jasem.v22i2.8

Pareek, R., & Bhamniya, J. (2013). Optimization of Injection Moulding Process using Taguchi and ANOVA. International Journal of Scientific & Engineering Research, 4(1), 1–6.

Sabic. (2022). SABIC Plastics. https://www.sabic.com/en/products/polymers

Shao, Y., Xu, F., & Liu, W. (2017). Influence of cryogenic treatment on mechanical and interfacial properties of carbon nanotube fiber /bisphenol-F epoxy composite. Composites Part B. https://doi.org/10.1016/j.compositesb.2017.05.077

Sharma, M., Gao, S., Mäder, E., Sharma, H., Wei, L. Y., & Bijwe, J. (2014). Carbon fiber surfaces and composite interphases. Composites Science and Technology, 102, 35–50. https://doi.org/10.1016/j.compscitech.2014.07.005

Shonaike, G. ., & Matsuo, T. (1996). An Experimental Study of Impregnation Conditions on Glass Fiber Reinforced Thermoplastic Polyester Elastomer Composites. Journal of Reinforced Plastics and Composites, 15, 16–29.

Torayca. (2018). T700S Data Sheet No. CFA-005.

Vishkaei, M. S., Mohd Salleh, M. A., Yunus, R., Awang Biak, D. R., Danafar, F., & Mirjalili, F. (2011). Effect of short carbon fiber surface treatment on composite properties. Journal of Composite Materials, 45(18), 1885–1891. https://doi.org/10.1177/0021998310389090

Wang, S., Chen, Z. H., Ma, W. J., & Ma, Q. S. (2006). Influence of heat treatment on physical-chemical properties of PAN-based carbon fiber. Ceramics International, 32(3), 291–295. https://doi.org/10.1016/j.ceramint.2005.02.014

Wang, T., Zhang, K., Wang, S., Wang, D., Zhao, X., Zhou, H., & Chen, C. (2021). Interfacial adhesion of carbon fiber to special engineering plastics: Effect of the functional groups in the matrix. High Performance Polymers, 33(4), 462–468. https://doi.org/10.1177/0954008320966042

Wenzhong, N. (2015). The effect of coupling agents on the mechanical properties of carbon fiber-reinforced polyimide composites. Journal of Thermoplastic Composite Materials, 28(11), 1572–1582. https://doi.org/10.1177/0892705714535794

Wong, K. H., Syed Mohammed, D., Pickering, S. J., & Brooks, R. (2012). Effect of coupling agents on reinforcing potential of recycled carbon fibre for polypropylene composite. Composites Science and Technology, 72(7), 835–844. https://doi.org/10.1016/j.compscitech.2012.02.013

Yao, T. T., Liu, Y. T., Zhu, H., Zhang, X. F., & Wu, G. P. (2019). Controlling of resin impregnation and interfacial adhesion in carbon fiber/polycarbonate composites by a spray-coating of polymer on carbon fibers. Composites Science and Technology, 182(August), 107763. https://doi.org/10.1016/j.compscitech.2019.107763

Yao, T. T., Wu, G. P., & Song, C. (2017). Interfacial adhesion properties of carbon fiber/polycarbonate composites by using a single-filament fragmentation test. Composites Science and Technology, 149, 108–115. https://doi.org/10.1016/j.compscitech.2017.06.017

Zhang, H., Zhang, Z., & Breidt, C. (2004). Comparison of short carbon fibre surface treatments on epoxy composites I. Enhancement of the mechanical properties. Composites Science and Technology, 64(13–14), 2021–2029. https://doi.org/10.1016/j.compscitech.2004.02.009

Zheng, Y., Gu, F., Ren, Y., Hall, P., & Miles, N. J. (2017). Improving Mechanical Properties of Recycled Polypropylene-based Composites Using TAGuchi and ANOVA Techniques. Procedia CIRP, 61, 287–292. https://doi.org/10.1016/j.procir.2016.11.137




DOI: https://doi.org/10.18196/st.v26i1.18597

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Cahyo Budiyantoro, Harini Sosiati, Kevin Atila Syahputra, Sudarisman Sudarisman

Editorial Office :

SEMESTA TEKNIKA

Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.

Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia

Telp:(62)274-387656, Fax.:(62)274-387656

Email: semesta_teknika@umy.ac.id, semestateknika@umy.university

Website: http://http://journal.umy.ac.id/index.php/st

Creative Commons License

Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.