The Influence of Fiber Treatment and Matrix Type on the Impregnation Quality of Carbon Fiber Reinforced Thermoplastics
Abstract
Keywords
Full Text:
PDFReferences
Budiyantoro, C., Rochardjo, H. S. B., & Nugroho, G. (2020). Effects of processing variables of extrusion–pultrusion method on the impregnation quality of thermoplastic composite filaments. Polymers, 12(12), 1–24. https://doi.org/10.3390/polym12122833
Budiyantoro, C., Rochardjo, H. S. B., & Nugroho, G. (2021). Overmolding of hybrid long and short carbon fiber polypropylene composite: Optimizing processing parameters. Journal of Manufacturing and Materials Processing, 5(4). https://doi.org/10.3390/jmmp5040132
Chandran, M. S., & Padmanabhan, K. (2019). Microbond fibre bundle pullout technique to evaluate the interfacial adhesion of polyethylene and polypropylene self reinforced composites. Applied Adhesion Science, 7(1). https://doi.org/10.1186/s40563-019-0121-z
Chang, S. H., Hwang, J. R., & Doong, J. L. (2000). Optimization of the injection molding process of short glass fiber reinforced polycarbonate composites using grey relational analysis. Journal of Materials Processing Technology, 97(1–3), 186–193. https://doi.org/10.1016/S0924-0136(99)00375-1
Chen, J., Cui, Y., Liu, Y., & Cui, J. (2023). Design and Parametric Optimization of the Injection Molding Process Using Statistical Analysis and Numerical Simulation. Processes, 11(414), 1–17.
Dai, Z., Zhang, B., Shi, F., Li, M., Zhang, Z., & Gu, Y. (2011). Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion. Applied Surface Science, 257(20), 8457–8461. https://doi.org/10.1016/j.apsusc.2011.04.129
Jia, Y. Y., Yan, W., & Liu, H. Y. (2011). Numetrical study on carbon fibre pullout using a cohesive zone model. ICCM International Conferences on Composite Materials, 1–6.
Kamps, J. H., Scheffler, C., Simon, F., van der Heijden, R., & Verghese, N. (2018). Functional polycarbonates for improved adhesion to carbon fibre. Composites Science and Technology, 167, 448–455. https://doi.org/10.1016/j.compscitech.2018.08.035
Käppler, I., Hund, R. D., & Cherif, C. (2014). Surface modification of carbon fibres using plasma technique. Autex Research Journal, 14(1), 34–38. https://doi.org/10.2478/v10304-012-0048-y
Koubaa, S., Le Corre, S., & Burtin, C. (2013). Thermoplastic pultrusion process: Modeling and optimal conditions for fibers impregnation. Journal of Reinforced Plastics and Composites, 32(17), 1285–1294. https://doi.org/10.1177/0731684413489851
Lee, J. S., & Kang, T. J. (1997). Changes in physico-chemical and morphological properties of carbon fiber by surface treatment. Carbon, 35(2), 209–216. https://doi.org/10.1016/S0008-6223(96)00138-8
Osarenmwinda, J. O., & Olodu, D. D. (2018). Optimization of injection moulding process parameters in the moulding of High Density Polyethylene (HDPE). Journal of Applied Sciences and Environmental Management, 22(2), 203. https://doi.org/10.4314/jasem.v22i2.8
Pareek, R., & Bhamniya, J. (2013). Optimization of Injection Moulding Process using Taguchi and ANOVA. International Journal of Scientific & Engineering Research, 4(1), 1–6.
Sabic. (2022). SABIC Plastics. https://www.sabic.com/en/products/polymers
Shao, Y., Xu, F., & Liu, W. (2017). Influence of cryogenic treatment on mechanical and interfacial properties of carbon nanotube fiber /bisphenol-F epoxy composite. Composites Part B. https://doi.org/10.1016/j.compositesb.2017.05.077
Sharma, M., Gao, S., Mäder, E., Sharma, H., Wei, L. Y., & Bijwe, J. (2014). Carbon fiber surfaces and composite interphases. Composites Science and Technology, 102, 35–50. https://doi.org/10.1016/j.compscitech.2014.07.005
Shonaike, G. ., & Matsuo, T. (1996). An Experimental Study of Impregnation Conditions on Glass Fiber Reinforced Thermoplastic Polyester Elastomer Composites. Journal of Reinforced Plastics and Composites, 15, 16–29.
Torayca. (2018). T700S Data Sheet No. CFA-005.
Vishkaei, M. S., Mohd Salleh, M. A., Yunus, R., Awang Biak, D. R., Danafar, F., & Mirjalili, F. (2011). Effect of short carbon fiber surface treatment on composite properties. Journal of Composite Materials, 45(18), 1885–1891. https://doi.org/10.1177/0021998310389090
Wang, S., Chen, Z. H., Ma, W. J., & Ma, Q. S. (2006). Influence of heat treatment on physical-chemical properties of PAN-based carbon fiber. Ceramics International, 32(3), 291–295. https://doi.org/10.1016/j.ceramint.2005.02.014
Wang, T., Zhang, K., Wang, S., Wang, D., Zhao, X., Zhou, H., & Chen, C. (2021). Interfacial adhesion of carbon fiber to special engineering plastics: Effect of the functional groups in the matrix. High Performance Polymers, 33(4), 462–468. https://doi.org/10.1177/0954008320966042
Wenzhong, N. (2015). The effect of coupling agents on the mechanical properties of carbon fiber-reinforced polyimide composites. Journal of Thermoplastic Composite Materials, 28(11), 1572–1582. https://doi.org/10.1177/0892705714535794
Wong, K. H., Syed Mohammed, D., Pickering, S. J., & Brooks, R. (2012). Effect of coupling agents on reinforcing potential of recycled carbon fibre for polypropylene composite. Composites Science and Technology, 72(7), 835–844. https://doi.org/10.1016/j.compscitech.2012.02.013
Yao, T. T., Liu, Y. T., Zhu, H., Zhang, X. F., & Wu, G. P. (2019). Controlling of resin impregnation and interfacial adhesion in carbon fiber/polycarbonate composites by a spray-coating of polymer on carbon fibers. Composites Science and Technology, 182(August), 107763. https://doi.org/10.1016/j.compscitech.2019.107763
Yao, T. T., Wu, G. P., & Song, C. (2017). Interfacial adhesion properties of carbon fiber/polycarbonate composites by using a single-filament fragmentation test. Composites Science and Technology, 149, 108–115. https://doi.org/10.1016/j.compscitech.2017.06.017
Zhang, H., Zhang, Z., & Breidt, C. (2004). Comparison of short carbon fibre surface treatments on epoxy composites I. Enhancement of the mechanical properties. Composites Science and Technology, 64(13–14), 2021–2029. https://doi.org/10.1016/j.compscitech.2004.02.009
Zheng, Y., Gu, F., Ren, Y., Hall, P., & Miles, N. J. (2017). Improving Mechanical Properties of Recycled Polypropylene-based Composites Using TAGuchi and ANOVA Techniques. Procedia CIRP, 61, 287–292. https://doi.org/10.1016/j.procir.2016.11.137
DOI: https://doi.org/10.18196/st.v26i1.18597
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Cahyo Budiyantoro, Harini Sosiati, Kevin Atila Syahputra, Sudarisman Sudarisman
Editorial Office :
SEMESTA TEKNIKA
Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.
Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia
Telp:(62)274-387656, Fax.:(62)274-387656
Email: semesta_teknika@umy.ac.id, semestateknika@umy.university
Website: http://http://journal.umy.ac.id/index.php/st
Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.