Thermal Resistance of the Loop Heat Pipe Prototype in Steady State Conditions
DOI:
https://doi.org/10.18196/st.v26i2.18788Keywords:
Loop Heat Pipe, thermal resistance, filling ratioAbstract
The nuclear accident at the Fukushima Daiichi nuclear power plant in March 2011 in Japan caused a tsunami and submerged the emergency diesel generator resulting in a station blackout (SBO). Based on the accident, a study was conducted on the use of passive safety systems as a support for active safety systems in nuclear reactor cooling systems. The Loop Heat Pipe (LHP) prototype is a small-scale LHP research facility, one of which is used to determine the characteristics and heat transfer events in LHP. Calculations to determine the thermal resistance of the LHP prototype need to be carried out to determine its performance level. The research was carried out experimentally for data collection followed by calculations based on the data that had been obtained. The calculation results obtained that the lowest thermal resistance is 0.014 °C/w with a 100% filling ratio and an airflow velocity of 2.5 m/s, so the setting of filling ratio and airflow velocity produces the best LHP prototype performance. The higher the airspeed, the greater the heat released by the condenser resulting in the value of the thermal resistance of the LHP prototype getting smaller. Thus, the greater the airspeed, the lower the thermal resistance of the LHP prototype, this indicates that the performance of the LHP prototype is increasing.References
Brautsch, A., & Kew, P. A. (2002). The effect of surface conditions on boiling heat transfer from Mesh Wick, Proceedings of 12th International Heat Transfer Conference, Elsevier SAS, Greenoble.
Bumataria, R. K., Chavda, N. K., & Panchal, H. (2019). Current research aspects in mono and hybrid nanofluid based heat pipe technologies. Heliyon, 5(5), 1-17.
Fachrudin, A. R. (2020). Pengaruh panjang kondensor terhadap kinerja termal heat pipe, Jurnal INTEKNA, 20(1), 47-52.
Fadillah, R., Kusuma, M.H., Giarno, G., & Kholil, A. (2021). Studi pengaruh filling ratio terhadap unjuk kerja termal model loop heat pipe. Sigma Epsilon – Buletin Ilmiah Teknologi Keselamatan Reaktor Nuklir, 25(2), 65-73. http://dx.doi.org/10.17146/sigma.2021.25.2.6366
Faghri, A. (2014). Heat pipes: Review, opportunities and challenges. Frontiers in Heat Pipes (FHP), 5(1). http://dx.doi.org/10.5098/fhp.5.1
Haryanto, D., Giarno, G., Kusnugroho, G. B. H., Rosidi, A., Wahanani, N. A., & Kusuma, M. H. (2022). The mechanical strength analysis on the pool tub of loop heat pipe prototype using CATIA software, Jurnal Polimesin, 20(1), 13-17. https://dx.doi.org/10.30811/jpl.v20i1.2303
He, J., Miao, J., Bai, L., Lin, G., Zhang, H., & Wen, D. (2016). Effect of noncondensable gas on the startup of a loop heat pipe. Applied Thermal Engineering,111, 1507-1516. https://doi.org/10.1016/j.applthermaleng.2016.07.154
Holman, J. P. (2010). Heat transfer, 10th ed. New York: McGraw-Hill.
Hopkins, R., Faghri, A., & Khrustalev, D. (1999) Flat miniature thermosyphons with micro capillary grooves. Journal of Heat Transfer, 121(1), 102-109.
Jiao, B., Qiu, L. M., Zhang, X. B., & Zhang, Y. (2008). Investigation on the effect of filling ratio on the steady state heat transfer performance of a vertical two-phase closed thermosyphon. Applied Thermal Engineering, 28(11), 1417-1426. https://doi.org/10.1016/j.applthermaleng.2007.09.009
Kusuma, M. H., Putra, N., Ismarwanti, S., & Widodo, S. (2017). Simulation of wickless-heat pipe as passive cooling system in nuclear spent fuel pool using RELAP5/MOD3.2. International Journal on Advanced Science, Engineering and Information Technology, 7(3), 836-842. https://doi.org/10.18517/ijaseit.7.3.2144
Putra, N., Kusuma, M. H., Antariksawan, A. R., Koestoer, R. A., Verlambang, B. T., & Ismarwanti, S. (2016). Unjuk kerja heat pipe pada sistem pendingin pasif di kolam bahan bakar nuklir bekas. Prosiding Seminar Nasional Teknologi dan Rekayasa (SENTRA), 297-304.
Nugraha, A. Y., Kusuma, M. H., Giarno, G., & Wardoyo, W. (2021). Studi eksperimen pengaruh beban kalor terhadap unjuk kerja termal model loop heat pipe. Sigma Epsilon – Buletin Ilmiah Teknologi Keselamatan Reaktor Nuklir, 25(2), 84-91. http://dx.doi.org/10.17146/sigma.2021.25.2.6368
Ramachandran, R., Ganesan, K., Rajkumar, M. R., Asirvatham, L. G., & Wongwises, S. (2016). Comparative study of the effect of hybrid nanoparticle on the thermal performance of cylindrical screen mesh heat pipe. International Communications in Heat and Mass Transfer, 76, 294-300. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.030
Reynaldi, R., Kusuma, M. H., Giarno, G., & Wulandari, D. A. (2021). Studi pengaruh laju aliran udara pendingin pada kondensator terhadap distribusi suhu model loop heat pipe. Sigma Epsilon – Buletin Ilmiah Teknologi Keselamatan Reaktor Nuklir, 25(2), 84-91. http://dx.doi.org/10.17146/sigma.2021.25.2.6371
Setyawan, I. (2018). Pengembangan hybrid loop heat pipe untuk aplikasi pendingin device berfluks kalor tinggi, Disertasi, Universitas Indonesia.
Setyawan, I., Riawan, S. R., Sari, S. P., & Ridwan, R. (2020). Analisis kinerja pipa kalor lurus menggunakan sumbu kapiler screen mesh 300 dengan memvariasikan filling ratio. Jurnal ASIIMETRIK: Jurnal Ilmiah Rekayasa & Inovasi, 2(2), 133-138. https://doi.org/10.35814/asiimetrik.v2i2.1470
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).