Thermal Resistance of the Loop Heat Pipe Prototype in Steady State Conditions

Authors

  • Dedy Haryanto Nuclear Reactor Technology Research Center, National Research and Innovation Agency (BRIN) Badan Riset dan Inovasi Nasional
  • Giarno Giarno Nuclear Reactor Technology Research Center, National Research and Innovation Agency (BRIN)
  • Sumantri Hatmoko Nuclear Reactor Technology Research Center, National Research and Innovation Agency (BRIN)
  • Yoyok Dwi Setyo Pambudi Nuclear Reactor Technology Research Center, National Research and Innovation Agency (BRIN)
  • M. Hadi Kusuma Nuclear Reactor Technology Research Center, National Research and Innovation Agency (BRIN)

DOI:

https://doi.org/10.18196/st.v26i2.18788

Keywords:

Loop Heat Pipe, thermal resistance, filling ratio

Abstract

The nuclear accident at the Fukushima Daiichi nuclear power plant in March 2011 in Japan caused a tsunami and submerged the emergency diesel generator resulting in a station blackout (SBO). Based on the accident, a study was conducted on the use of passive safety systems as a support for active safety systems in nuclear reactor cooling systems. The Loop Heat Pipe (LHP) prototype is a small-scale LHP research facility, one of which is used to determine the characteristics and heat transfer events in LHP. Calculations to determine the thermal resistance of the LHP prototype need to be carried out to determine its performance level. The research was carried out experimentally for data collection followed by calculations based on the data that had been obtained. The calculation results obtained that the lowest thermal resistance is 0.014 °C/w with a 100% filling ratio and an airflow velocity of 2.5 m/s, so the setting of filling ratio and airflow velocity produces the best LHP prototype performance. The higher the airspeed, the greater the heat released by the condenser resulting in the value of the thermal resistance of the LHP prototype getting smaller. Thus, the greater the airspeed, the lower the thermal resistance of the LHP prototype, this indicates that the performance of the LHP prototype is increasing.

References

Brautsch, A., & Kew, P. A. (2002). The effect of surface conditions on boiling heat transfer from Mesh Wick, Proceedings of 12th International Heat Transfer Conference, Elsevier SAS, Greenoble.

Bumataria, R. K., Chavda, N. K., & Panchal, H. (2019). Current research aspects in mono and hybrid nanofluid based heat pipe technologies. Heliyon, 5(5), 1-17.

Fachrudin, A. R. (2020). Pengaruh panjang kondensor terhadap kinerja termal heat pipe, Jurnal INTEKNA, 20(1), 47-52.

Fadillah, R., Kusuma, M.H., Giarno, G., & Kholil, A. (2021). Studi pengaruh filling ratio terhadap unjuk kerja termal model loop heat pipe. Sigma Epsilon – Buletin Ilmiah Teknologi Keselamatan Reaktor Nuklir, 25(2), 65-73. http://dx.doi.org/10.17146/sigma.2021.25.2.6366

Faghri, A. (2014). Heat pipes: Review, opportunities and challenges. Frontiers in Heat Pipes (FHP), 5(1). http://dx.doi.org/10.5098/fhp.5.1

Haryanto, D., Giarno, G., Kusnugroho, G. B. H., Rosidi, A., Wahanani, N. A., & Kusuma, M. H. (2022). The mechanical strength analysis on the pool tub of loop heat pipe prototype using CATIA software, Jurnal Polimesin, 20(1), 13-17. https://dx.doi.org/10.30811/jpl.v20i1.2303

He, J., Miao, J., Bai, L., Lin, G., Zhang, H., & Wen, D. (2016). Effect of noncondensable gas on the startup of a loop heat pipe. Applied Thermal Engineering,111, 1507-1516. https://doi.org/10.1016/j.applthermaleng.2016.07.154

Holman, J. P. (2010). Heat transfer, 10th ed. New York: McGraw-Hill.

Hopkins, R., Faghri, A., & Khrustalev, D. (1999) Flat miniature thermosyphons with micro capillary grooves. Journal of Heat Transfer, 121(1), 102-109.

Jiao, B., Qiu, L. M., Zhang, X. B., & Zhang, Y. (2008). Investigation on the effect of filling ratio on the steady state heat transfer performance of a vertical two-phase closed thermosyphon. Applied Thermal Engineering, 28(11), 1417-1426. https://doi.org/10.1016/j.applthermaleng.2007.09.009

Kusuma, M. H., Putra, N., Ismarwanti, S., & Widodo, S. (2017). Simulation of wickless-heat pipe as passive cooling system in nuclear spent fuel pool using RELAP5/MOD3.2. International Journal on Advanced Science, Engineering and Information Technology, 7(3), 836-842. https://doi.org/10.18517/ijaseit.7.3.2144

Putra, N., Kusuma, M. H., Antariksawan, A. R., Koestoer, R. A., Verlambang, B. T., & Ismarwanti, S. (2016). Unjuk kerja heat pipe pada sistem pendingin pasif di kolam bahan bakar nuklir bekas. Prosiding Seminar Nasional Teknologi dan Rekayasa (SENTRA), 297-304.

Nugraha, A. Y., Kusuma, M. H., Giarno, G., & Wardoyo, W. (2021). Studi eksperimen pengaruh beban kalor terhadap unjuk kerja termal model loop heat pipe. Sigma Epsilon – Buletin Ilmiah Teknologi Keselamatan Reaktor Nuklir, 25(2), 84-91. http://dx.doi.org/10.17146/sigma.2021.25.2.6368

Ramachandran, R., Ganesan, K., Rajkumar, M. R., Asirvatham, L. G., & Wongwises, S. (2016). Comparative study of the effect of hybrid nanoparticle on the thermal performance of cylindrical screen mesh heat pipe. International Communications in Heat and Mass Transfer, 76, 294-300. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.030

Reynaldi, R., Kusuma, M. H., Giarno, G., & Wulandari, D. A. (2021). Studi pengaruh laju aliran udara pendingin pada kondensator terhadap distribusi suhu model loop heat pipe. Sigma Epsilon – Buletin Ilmiah Teknologi Keselamatan Reaktor Nuklir, 25(2), 84-91. http://dx.doi.org/10.17146/sigma.2021.25.2.6371

Setyawan, I. (2018). Pengembangan hybrid loop heat pipe untuk aplikasi pendingin device berfluks kalor tinggi, Disertasi, Universitas Indonesia.

Setyawan, I., Riawan, S. R., Sari, S. P., & Ridwan, R. (2020). Analisis kinerja pipa kalor lurus menggunakan sumbu kapiler screen mesh 300 dengan memvariasikan filling ratio. Jurnal ASIIMETRIK: Jurnal Ilmiah Rekayasa & Inovasi, 2(2), 133-138. https://doi.org/10.35814/asiimetrik.v2i2.1470

Downloads

Additional Files

Published

2023-11-25

How to Cite

Haryanto, D., Giarno, G., Hatmoko, S., Pambudi, Y. D. S., & Kusuma, M. H. (2023). Thermal Resistance of the Loop Heat Pipe Prototype in Steady State Conditions. Semesta Teknika, 26(2), 214–221. https://doi.org/10.18196/st.v26i2.18788

Issue

Section

Articles