Classification of Brain Image Tumor using EfficientNet B1-B2 Deep Learning

Widi Hastomo, Adhitio Satyo Bayangkari Karno, Ellya Sestri, Vany Terisia, Diana Yusuf, Shevty Arbekti Arman, Dodi Arif

Abstract


In this study, a new neural network model (EfficientNet B1-B2) was sought for the detection of brain tumors in magnetic resonance imaging (MRI) images. The primary objective was to achieve high accuracy rates so as to classify the images. The deep learning techniques meticulously processed and increased the data augmentation as much as possible for the EfficientNet B1-B2 models. Our experimental results show an accuracy of 98% in the B1 version in Table II. This provides a potentially optimistic view of the application of artificial intelligence technology to disease diagnosis based on medical image analysis. Nonetheless, we must remind ourselves that the dataset we used has limitations in terms of the challenges it can pose. Although the number of potential variations of actual medical images constitutes a major challenge, it is not the only one. Most medical datasets are unbalanced, contain highly variable noise, have a slow internal structure, and are often small in size. Hence, our end goal is to help stimulate not only the field of brain tumor detection and treatment but also the development of more sophisticated classification models in the health context.


Keywords


brain tumor; classification; efficientNet

Full Text:

PDF

References


Adir, O., Poley, M., Chen, G., Froim, S., Krinsky, N., Shklover, J., Shainsky-Roitman, J., Lammers, T., & Schroeder, A. (2020). Integrating artificial intelligence and nanotechnology for precision cancer medicine. Advanced Materials, 32(13), 1901989. https://doi.org/https://doi.org/10.1002/adma.201901989

Arif, M., Jims, A., F., A., Geman, O., Craciun, M.-D., & Leuciuc, F. (2022). Application of genetic algorithm and U-Net in brain tumor segmentation and classification: A deep learning approach. Computational Intelligence and Neuroscience, 2022, 5625757. https://doi.org/10.1155/2022/5625757

Chakrabarty, N. (2019). Brain MRI images for brain tumor detection. Kaggle.Com. https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection

Dang, K., Vo, T., Ngo, L., & Ha, H. (2022). A deep learning framework integrating MRI image preprocessing methods for brain tumor segmentation and classification. IBRO Neuroscience Reports, 13, 523–532. https://doi.org/https://doi.org/10.1016/j.ibneur.2022.10.014

Demir, F., Akbulut, Y., Taşcı, B., & Demir, K. (2023). Improving brain tumor classification performance with an effective approach based on new deep learning model named 3ACL from 3D MRI data. Biomedical Signal Processing and Control, 81, 104424. https://doi.org/https://doi.org/10.1016/j.bspc.2022.104424

Emam, M. M., Samee, N. A., Jamjoom, M. M., & Houssein, E. H. (2023). Optimized deep learning architecture for brain tumor classification using improved Hunger Games Search Algorithm. Computers in Biology and Medicine, 160, 106966. https://doi.org/https://doi.org/10.1016/j.compbiomed.2023.106966

Farajzadeh, N., Sadeghzadeh, N., & Hashemzadeh, M. (2023). Brain tumor segmentation and classification on MRI via deep hybrid representation learning. Expert Systems with Applications, 224, 119963. https://doi.org/https://doi.org/10.1016/j.eswa.2023.119963

Farhat, H., Sakr, G. E., & Kilany, R. (2020). Deep learning applications in pulmonary medical imaging: recent updates and insights on COVID-19. Machine Vision and Applications, 31(6), 53. https://doi.org/10.1007/s00138-020-01101-5

Filatov, D., & Yar, G. N. A. H. (2022). Brain tumor diagnosis and classification via pre-trained convolutional neural networks. 0–5. http://arxiv.org/abs/2208.00768

Goutham, V., Sameerunnisa, A., Babu, S., & Prakash, T. B. (2022). Brain tumor classification using EfficientNet-B0 model. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 2503–2509. https://doi.org/10.1109/ICACITE53722.2022.9823526

Huml, M., Silye, R., Zauner, G., Hutterer, S., & Schilcher, K. (2023). Brain tumor classification using AFM in combination with data mining techniques. BioMed Research International, 2, 176519. https://doi.org/10.1155/2013/176519

Isunuri, B. V., & Kakarla, J. (2023). EfficientNet and multi-path convolution with multi-head attention network for brain tumor grade classification. Computers and Electrical Engineering, 108, 108700. https://doi.org/https://doi.org/10.1016/j.compeleceng.2023.108700

Kanchanamala, P., K.G., R., & Ananth, M. B. J. (2023). Optimization-enabled hybrid deep learning for brain tumor detection and classification from MRI. Biomedical Signal Processing and Control, 84, 104955. https://doi.org/https://doi.org/10.1016/j.bspc.2023.104955

Khairandish, M. O., Sharma, M., Jain, V., Chatterjee, J. M., & Jhanjhi, N. Z. (2022). A hybrid CNN-SVM threshold segmentation approach for tumor detection and classification of MRI brain images. IRBM, 43(4), 290–299. https://doi.org/https://doi.org/10.1016/j.irbm.2021.06.003

Lakshmi Veeranki, P. S., Banavath, G. L., & Devi, P. R. (2023). Detection and classification of brain tumors using convolutional neural network. 7th International Conference on Trends in Electronics and Informatics, ICOEI 2023 - Proceedings, 780–786. https://doi.org/10.1109/ICOEI56765.2023.10125652

Mehnatkesh, H., Jalali, S. M. J., Khosravi, A., & Nahavandi, S. (2023). An intelligent driven deep residual learning framework for brain tumor classification using MRI images. Expert Systems with Applications, 213, 119087. https://doi.org/https://doi.org/10.1016/j.eswa.2022.119087

Nayak, D. R., Padhy, N., Mallick, P. K., Zymbler, M., & Kumar, S. (2022). Brain tumor classification using Dense Efficient-Net. Axioms, 11(1). https://doi.org/10.3390/axioms11010034

Panayides, A. S., Amini, A., Filipovic, N. D., Sharma, A., Tsaftaris, S. A., Young, A., Foran, D., Do, N., Golemati, S., Kurc, T., Huang, K., Nikita, K. S., Veasey, B. P., Zervakis, M., Saltz, J. H., & Pattichis, C. S. (2020). AI in medical imaging informatics: Current challenges and future directions. IEEE Journal of Biomedical and Health Informatics, 24(7), 1837–1857. https://doi.org/10.1109/JBHI.2020.2991043

Pradeep, K. R., Gangadharan, S. M. P., Hatamleh, W. A., Tarazi, H., Shukla, P. K., & Tiwari, B. (2022). Improved machine learning method for intracranial tumor detection with accelerated particle swarm optimization. Journal of Healthcare Engineering, 2022, 1128217. https://doi.org/10.1155/2022/1128217

Rao, C. S., & Karunakara, K. (2022). Efficient detection and classification of brain tumor using Kernel based SVM for MRI. Multimedia Tools and Applications, 81(5), 7393–7417. https://doi.org/10.1007/s11042-021-11821-z

Ren, W., Hasanzade Bashkandi, A., Afshar Jahanshahi, J., Qasim Mohammad AlHamad, A., Javaheri, D., & Mohammadi, M. (2023). Brain tumor diagnosis using a step-by-step methodology based on courtship learning-based water strider algorithm. Biomedical Signal Processing and Control, 83, 104614. https://doi.org/https://doi.org/10.1016/j.bspc.2023.104614

Rinesh, S., Maheswari, K., Arthi, B., Sherubha, P., Vijay, A., Sridhar, S., Rajendran, T., & Waji, Y. A. (2022). Investigations on brain tumor classification using hybrid machine learning algorithms. Journal of Healthcare Engineering, 2022, 2761847. https://doi.org/10.1155/2022/2761847

Sachdeva, J., Kumar, V., Gupta, I., Khandelwal, N., & Ahuja, C. K. (2016). A package-SFERCB-“Segmentation, feature extraction, reduction and classification analysis by both SVM and ANN for brain tumors.” Applied Soft Computing, 47, 151–167. https://doi.org/https://doi.org/10.1016/j.asoc.2016.05.020

Schmidt, C. K., Medina-Sánchez, M., Edmondson, R. J., & Schmidt, O. G. (2020). Engineering microrobots for targeted cancer therapies from a medical perspective. Nature Communications, 11(1), 5618. https://doi.org/10.1038/s41467-020-19322-7

Shah, H. A., Saeed, F., Yun, S., Park, J.-H., Paul, A., & Kang, J.-M. (2022). A robust approach for brain tumor detection in magnetic resonance images using Finetuned EfficientNet. IEEE Access, 10, 65426–65438. https://doi.org/10.1109/ACCESS.2022.3184113

Srinivas, C., K. S., N. P., Zakariah, M., Alothaibi, Y. A., Shaukat, K., Partibane, B., & Awal, H. (2022). Deep transfer learning Approaches in Performance Analysis of Brain Tumor Classification Using MRI Images. Journal of Healthcare Engineering, 2022, 3264367. https://doi.org/10.1155/2022/3264367

Tabatabaei, S., Rezaee, K., & Zhu, M. (2023). Attention transformer mechanism and fusion-based deep learning architecture for MRI brain tumor classification system. Biomedical Signal Processing and Control, 86, 105119. https://doi.org/https://doi.org/10.1016/j.bspc.2023.105119

Tripathy, S., Singh, R., & Ray, M. (2023). Automation of brain tumor identification using EfficientNet on magnetic resonance images. Procedia Computer Science, 218, 1551–1560. https://doi.org/https://doi.org/10.1016/j.procs.2023.01.133

Vankdothu, R., & Hameed, M. A. (2022). Brain tumor segmentation of MR images using SVM and fuzzy classifier in machine learning. Measurement: Sensors, 24, 100440. https://doi.org/https://doi.org/10.1016/j.measen.2022.100440

Zahid, U., Ashraf, I., Khan, M. A., Alhaisoni, M., Yahya, K. M., Hussein, H. S., & Alshazly, H. (2022). BrainNet: Optimal deep learning feature fusion for brain tumor classification. Computational Intelligence and Neuroscience, 2022, 1465173. https://doi.org/10.1155/2022/1465173

Zhaputri, A., Hayaty, M., & Laksito, A. D. (2021). Classification of brain tumor MRI images using efficient network. ICOIACT 2021 - 4th International Conference on Information and Communications Technology: The Role of AI in Health and Social Revolution in Turbulence Era, August, 108–113. https://doi.org/10.1109/ICOIACT53268.2021.9563922

Zulfiqar, F., Ijaz Bajwa, U., & Mehmood, Y. (2023). Multi-class classification of brain tumor types from MR images using EfficientNets. Biomedical Signal Processing and Control, 84, 104777. https://doi.org/https://doi.org/10.1016/j.bspc.2023.104777




DOI: https://doi.org/10.18196/st.v27i1.19691

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Widi Hastomo, Adhitio Satyo Bayangkari Karno, Ellya Sestri, Vany Terisia, Diana Yusuf, Shevty Arbekti Arman, Dodi Arif

Editorial Office :

SEMESTA TEKNIKA

Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.

Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia

Telp:(62)274-387656, Fax.:(62)274-387656

Email: semesta_teknika@umy.ac.id, semestateknika@umy.university

Website: http://http://journal.umy.ac.id/index.php/st

Creative Commons License

Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.