Thermogravimetric Analysis of Eucalyptus Leaves as An Alternative Fuel for Rural Areas

Cici Maarasyid, Ida Idayu, Zulfansyah Zulfansyah, Israyandi Israyandi, Lisa Legawati, Dini Aulia Sari Ermal, Dwi Annisa Fithry

Abstract


The utilization of biomass waste as a substitute for conventional energy sources has gained popularity, and one possible source is the litter generated by eucalyptus plantations. The present study used thermogravimetric analysis (TGA) gain insight into the thermochemical characteristics of eucalyptus leaves. It was identified by heating the sample in a nitrogen environment from ambient temperature to 850oC at a rate of 10 oC/minute. Eucalyptus leaves have a high volatile matter (VM) content and a calorific value (CV) of 17.26 MJ/kg, according to the ultimate and proximate analysis. Additionally, the TGA results showed that eucalyptus leaves had a lower ignition temperature than other biomasses. Eucalyptus leaves began to devolatilize at 119 oC, reaching a peak temperature of 326 oC, and losing 68% of their weight as a result.

Keywords


Eucalyptus leaves; thermogravimetric, solid fuel; renewable energy

Full Text:

PDF

References


Achmad, H. N., Rana, H. E., Fadilla, I., Fajar, A., Manurung, R., & Abduh, M. Y. (2018). Determination of Yield and Chemical Composition of Eucalyptus Oil From Different Species and Locations in Indonesia. Biological and Natural Resources Engineering Journal, 01(01), 36–49.

Ameur, E., Sarra, M., Yosra, D., Mariem, K., Nabil, A., Lynen, F., & Larbi, K. M. (2021). Chemical composition of essential oils of eight Tunisian Eucalyptus species and their antibacterial activity against strains responsible for otitis. BMC Complementary Medicine and Therapies, 21(1), 1–16. https://doi.org/10.1186/s12906-021-03379-y.

Chen, W. H., Kuo, P. C., Liu, S. H., & Wu, W. (2014). Thermal characterization of oil palm fiber and eucalyptus in torrefaction. Energy, 71, 40–48. https://doi.org/10.1016/j.energy.2014.03.117.

Chen, W. H., Peng, J., & Bi, X. T. (2015). A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847–866. https://doi.org/10.1016/j.rser.2014.12.039.

Cieplik, M. K., FrydaL, L. E., van de Kamp, W. L., & Kiel, J. H. A. (2010). Ash Formation, Slagging and Fouling in Biomass Co-firing in Pulverised-fuel Boilers. In P. Grammelis (Ed.), Solid Biofuels for Energy: A Lower Greenhouse Gas Alternative Solid Biofuels for Energy (pp. 197–217). Springer. https://doi.org/10.1007/978-1-84996-393-0.

Cizungu, L., Staelens, J., Huygens, D., Walangululu, J., Muhindo, D., Van Cleemput, O., & Boeckx, P. (2014). Litterfall and leaf litter decomposition in a central African tropical mountain forest and Eucalyptus plantation. Forest Ecology and Management, 326, 109–116. https://doi.org/10.1016/j.foreco.2014.04.015

Kartiko, A. B., Putri, A. S., Rosamah, E., & Kuspradini, H. (2021). Evaluation of Antibacterial Activity and Physico-Chemical Profiles of Eucalyptus pellita Essential Oil from East Kalimantan . Proceedings of the Joint Symposium on Tropical Studies (JSTS-19), 11, 9–13. https://doi.org/10.2991/absr.k.210408.002.

Limam, H., Ben Jemaa, M., Tammar, S., Ksibi, N., Khammassi, S., Jallouli, S., Del Re, G., & Msaada, K. (2020). Variation in chemical profile of leaves essential oils from thirteen Tunisian Eucalyptus species and evaluation of their antioxidant and antibacterial properties. Industrial Crops and Products, 158(September), 112964. https://doi.org/10.1016/j.indcrop.2020.112964.

Maarasyid, C., Muhamad, I. I., Nik Mahmood, N. A., & Zulfansyah. (2017). Solid fuel feedstock from leaves litter of industrial forestry in Riau, Indonesia. In Materials Science Forum (Vol. 883). https://doi.org/10.4028/www.scientific.net/MSF.883.102.

Magdziarz, A., & Wilk, M. (2013). Thermogravimetric study of biomass, sewage sludge and coal combustion. Energy Conversion and Management, 75, 425–430. https://doi.org/10.1016/j.enconman.2013.06.016.

McKendry, P. (2002). Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 83(1), 37–46. https://doi.org/10.1016/S0960-8524(01)00118-3.

Nyakuma, B. B., Johari, A., Ahmad, A., & Amran, T. (2014). Thermogravimetric Analysis of the Fuel Properties of Empty Fruit Bunch Briquettes. Jurnal Teknologi (Sciences and Engineering), 67(3), 79–82.

Priya, Deora, P. S., Verma, Y., Muhal, R. A., Goswami, C., & Singh, T. (2022). Biofuels: An alternative to conventional fuel and energy source. Materials Today: Proceedings, 48, 1178–1184. https://doi.org/https://doi.org/10.1016/j.matpr.2021.08.227.

Saidur, R., Abdelaziz, E. a., Demirbas, a., Hossain, M. S., & Mekhilef, S. (2011). A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews, 15(5), 2262–2289. https://doi.org/10.1016/j.rser.2011.02.015.

Worasuwannarak, N., Sonobe, T., & Tanthapanichakoon, W. (2007). Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. Journal of Analytical and Applied Pyrolysis, 78(2), 265–271. https://doi.org/10.1016/j.jaap.2006.08.002.




DOI: https://doi.org/10.18196/st.v27i1.20002

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Cici Maarasyid, Ida Idayu, Zulfansyah, Israyandi, Lisa Legawati, Dini Aulia Sari Ermal, Dwi Annisa Fithry

Editorial Office :

SEMESTA TEKNIKA

Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.

Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia

Telp:(62)274-387656, Fax.:(62)274-387656

Email: semesta_teknika@umy.ac.id, semestateknika@umy.university

Website: http://http://journal.umy.ac.id/index.php/st

Creative Commons License

Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.