The Effect of Rotational Tool Speed on Dissimilar Joint Aluminum-Copper Plate Friction Stir Welded Joint

Aris Widyo Nugroho, Khukuh Aulia Rahman, Muhammad Budi Nur Rahman

Abstract


The study investigates the impact of rotational tool speed on the mechanical properties and microstructure of aluminum-cooper friction stir-welded joints. It found that higher rotational speed leads to increased grain size, possibly due to increased heat production. Higher hardness values in the stir zone result from uniform dispersion of smaller copper particles. The study found that 540 rpm yields the maximum hardness value in the stir zone, measuring 67 VHN. However, higher speed results in defects like voids, cracks, and intermetallic compounds (IMCs), which are linked to the formation of IMCs at elevated temperatures. The optimal welding conditions at 550 rpm balance grain refinement, hardness enhancement, and defect mitigation, contributing to the understanding of welding process parameters.

Keywords


Friction stir welding; dissimilar joint; rotational tool speed; stir zone

Full Text:

PDF

References


Ajri, A., Rohatgi, N., , & Shin, Y. C. (2020). Analysis of defect formation mechanisms and their effects on weld strength during friction stir welding of Al 6061-T6 via experiments and finite element modeling. The International Journal of Advanced Manufacturing Technology, 107, 4621-4635. https://doi.org/10.1007/s00170-020-05353-3

Albannai, A. I. (2020). Review the common defects in friction stir welding, International Journal of Scientific & Technology Research, 9(11), 318-329.

Bisadi, H., Tavakoli, A., Sangsaraki, M. T., & Sangsaraki, K. T. (2013). The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints, Materials & Design, 43, 80-88. https://doi.org/10.1016/j.matdes.2012.06.029

Boucherit, A., Avettand-fènoël, M., & Taillard, R. (2017). Effect of a Zn interlayer on dissimilar FSSW of Al and Cu, Materials & Design, 124(2897), 87-99. https://doi.org/10.1016/j.matdes.2017.03.063

Chen, C.-Y., Chen, H.-L., & Hwang, W.-S. (2006). Influence of interfacial structure development on the fracture mechanism and bond strength of aluminum/copper bimetal plate, Materials Transactions, 47(4), 1232-1239. https://doi.org/10.2320/matertrans.47.1232

Derniawan, T. H., Nurdin, N., & Fakhriza, F. (2021). Analisa pengaruh putaran spindel pada friction welding terhadap tensile strength Aluminum A6061, Journal of Welding Technology, 3(1), 12-16. https://dx.doi.org/10.30811/jowt.v3i1.2034

Elmetwally, H. T., SaadAllah, H. N., Abd-Elhady, M., & Abdel-Magied, R. K. (2020). Optimum combination of rotational and welding speeds for welding of Al/Cu-butt joint by friction stir welding. The International Journal of Advanced Manufacturing Technology, 110, 163-175. https://doi.org/10.1007/s00170-020-05815-8

Fuse, K., Badheka, V., Oza, A. D., Prakash,C., Buddhi, D., Dixit, S., & Vatin, N. (2022). Microstructure and mechanical properties analysis of Al/Cu dissimilar alloys joining by using conventional and bobbin tool friction stir welding. Materials, 15(15), 5159. https://doi.org/10.3390/ma15155159

Jatimurti, W., Kurniawan, F., & Kurniawan, B. A. (2019). Analisa kecepatan pengelasan dan kecepatan putar mata pahat terhadap konduktivitas listrik sambungan aluminum dan tembaga hasil friction stir welding (FSW), Jurnal Engine, 3(2), 39-46. http://dx.doi.org/10.30588/jeemm.v3i2.536

Khajeh, R., Jafarian, H. R., Seyedein, S. H., Jabraeili, R., Eivani, A. R., Park, N., Kim, Y., & Heidarzadeh, A. (2021). Microstructure, mechanical and electrical properties of dissimilar friction stir welded 2024 aluminum alloy and copper joints. Journal Materials Research Technology, 14, 1945–1957. https://doi.org/10.1016/j.jmrt.2021.07.058

Khodir, S. A., Ahmed, M. M. Z., Ahmed, E., Mohamed, S. M. R., & Abdel-Aleem, H. (2016). Effect of intermetallic compound phases on the mechanical properties of the dissimilar Al/Cu friction stir welded joints, Journal of Materials Engineering and Performance, 25, 4637-4648. https://doi.org/10.1007/s11665-016-2314-y

Liu, L., Wang, H., Song, G., & Ye, J. (2007). Microstructure characteristics and mechanical properties of laser weld bonding of magnesium alloy to aluminum alloy, Journal of Materials Science, 42, 565–572. https://doi.org/10.1007/s10853-006-1068-6

Muthu, M. F. X., & Jayabalan, V. (2015). Tool travel speed effects on the microstructure of friction stir welded aluminum–copper joints, Journal of Materials Processing Technology, 217, 105–113. https://doi.org/10.1016/j.jmatprotec.2014.11.007

Osman, N., Sajuri, Z., Baghdadi, A. H., & Omar, M. Z. (2019). Effect of process parameters on interfacial bonding properties of aluminium–copper clad sheet processed by multi-pass friction stir-welding technique, METALS, 9(11), 1159. https://doi.org/10.3390/met9111159

Rajakumar, S., & Balasubramania, V. (2012). Correlation between weld nuggets grain size, weld nuggets hardness and tensile strength of friction stir welded commercial grade aluminium alloy joints, Material & Design, 34, 242-251. https://doi.org/10.1016/j.matdes.2011.07.054

Tan, C. W., Jiang, Z. G., Li, L. Q., Chen, Y. B., & Chen, X. Y. (2013). Microstructural evolution and mechanical properties of dissimilar Al–Cu joints produced by friction stir welding. Materials & Design, 51, 466-473. https://doi.org/10.1016/j.matdes.2013.04.056

Xue, P., Xie, G., Xiao, B., Ma, Z., & Geng, L. (2010). Effect of heat input conditions on microstructure and mechanical properties of friction-stir-welded pure copper, Metallurgical and Materials Transactions, 41A(8), 2010-2021. https://doi.org/10.1007/s11661-010-0254-y




DOI: https://doi.org/10.18196/st.v26i2.20477

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Aris Widyo Nugroho, Khukuh Aulia Rahman, Muhammad Budi Nur Rahman

Editorial Office :

SEMESTA TEKNIKA

Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.

Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia

Telp:(62)274-387656, Fax.:(62)274-387656

Email: semesta_teknika@umy.ac.id, semestateknika@umy.university

Website: http://http://journal.umy.ac.id/index.php/st

Creative Commons License

Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.