The Effect of Rotational Tool Speed on Dissimilar Joint Aluminum-Copper Plate Friction Stir Welded Joint
Abstract
Keywords
Full Text:
PDFReferences
Ajri, A., Rohatgi, N., , & Shin, Y. C. (2020). Analysis of defect formation mechanisms and their effects on weld strength during friction stir welding of Al 6061-T6 via experiments and finite element modeling. The International Journal of Advanced Manufacturing Technology, 107, 4621-4635. https://doi.org/10.1007/s00170-020-05353-3
Albannai, A. I. (2020). Review the common defects in friction stir welding, International Journal of Scientific & Technology Research, 9(11), 318-329.
Bisadi, H., Tavakoli, A., Sangsaraki, M. T., & Sangsaraki, K. T. (2013). The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints, Materials & Design, 43, 80-88. https://doi.org/10.1016/j.matdes.2012.06.029
Boucherit, A., Avettand-fènoël, M., & Taillard, R. (2017). Effect of a Zn interlayer on dissimilar FSSW of Al and Cu, Materials & Design, 124(2897), 87-99. https://doi.org/10.1016/j.matdes.2017.03.063
Chen, C.-Y., Chen, H.-L., & Hwang, W.-S. (2006). Influence of interfacial structure development on the fracture mechanism and bond strength of aluminum/copper bimetal plate, Materials Transactions, 47(4), 1232-1239. https://doi.org/10.2320/matertrans.47.1232
Derniawan, T. H., Nurdin, N., & Fakhriza, F. (2021). Analisa pengaruh putaran spindel pada friction welding terhadap tensile strength Aluminum A6061, Journal of Welding Technology, 3(1), 12-16. https://dx.doi.org/10.30811/jowt.v3i1.2034
Elmetwally, H. T., SaadAllah, H. N., Abd-Elhady, M., & Abdel-Magied, R. K. (2020). Optimum combination of rotational and welding speeds for welding of Al/Cu-butt joint by friction stir welding. The International Journal of Advanced Manufacturing Technology, 110, 163-175. https://doi.org/10.1007/s00170-020-05815-8
Fuse, K., Badheka, V., Oza, A. D., Prakash,C., Buddhi, D., Dixit, S., & Vatin, N. (2022). Microstructure and mechanical properties analysis of Al/Cu dissimilar alloys joining by using conventional and bobbin tool friction stir welding. Materials, 15(15), 5159. https://doi.org/10.3390/ma15155159
Jatimurti, W., Kurniawan, F., & Kurniawan, B. A. (2019). Analisa kecepatan pengelasan dan kecepatan putar mata pahat terhadap konduktivitas listrik sambungan aluminum dan tembaga hasil friction stir welding (FSW), Jurnal Engine, 3(2), 39-46. http://dx.doi.org/10.30588/jeemm.v3i2.536
Khajeh, R., Jafarian, H. R., Seyedein, S. H., Jabraeili, R., Eivani, A. R., Park, N., Kim, Y., & Heidarzadeh, A. (2021). Microstructure, mechanical and electrical properties of dissimilar friction stir welded 2024 aluminum alloy and copper joints. Journal Materials Research Technology, 14, 1945–1957. https://doi.org/10.1016/j.jmrt.2021.07.058
Khodir, S. A., Ahmed, M. M. Z., Ahmed, E., Mohamed, S. M. R., & Abdel-Aleem, H. (2016). Effect of intermetallic compound phases on the mechanical properties of the dissimilar Al/Cu friction stir welded joints, Journal of Materials Engineering and Performance, 25, 4637-4648. https://doi.org/10.1007/s11665-016-2314-y
Liu, L., Wang, H., Song, G., & Ye, J. (2007). Microstructure characteristics and mechanical properties of laser weld bonding of magnesium alloy to aluminum alloy, Journal of Materials Science, 42, 565–572. https://doi.org/10.1007/s10853-006-1068-6
Muthu, M. F. X., & Jayabalan, V. (2015). Tool travel speed effects on the microstructure of friction stir welded aluminum–copper joints, Journal of Materials Processing Technology, 217, 105–113. https://doi.org/10.1016/j.jmatprotec.2014.11.007
Osman, N., Sajuri, Z., Baghdadi, A. H., & Omar, M. Z. (2019). Effect of process parameters on interfacial bonding properties of aluminium–copper clad sheet processed by multi-pass friction stir-welding technique, METALS, 9(11), 1159. https://doi.org/10.3390/met9111159
Rajakumar, S., & Balasubramania, V. (2012). Correlation between weld nuggets grain size, weld nuggets hardness and tensile strength of friction stir welded commercial grade aluminium alloy joints, Material & Design, 34, 242-251. https://doi.org/10.1016/j.matdes.2011.07.054
Tan, C. W., Jiang, Z. G., Li, L. Q., Chen, Y. B., & Chen, X. Y. (2013). Microstructural evolution and mechanical properties of dissimilar Al–Cu joints produced by friction stir welding. Materials & Design, 51, 466-473. https://doi.org/10.1016/j.matdes.2013.04.056
Xue, P., Xie, G., Xiao, B., Ma, Z., & Geng, L. (2010). Effect of heat input conditions on microstructure and mechanical properties of friction-stir-welded pure copper, Metallurgical and Materials Transactions, 41A(8), 2010-2021. https://doi.org/10.1007/s11661-010-0254-y
DOI: https://doi.org/10.18196/st.v26i2.20477
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Aris Widyo Nugroho, Khukuh Aulia Rahman, Muhammad Budi Nur Rahman
Editorial Office :
SEMESTA TEKNIKA
Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.
Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia
Telp:(62)274-387656, Fax.:(62)274-387656
Email: semesta_teknika@umy.ac.id, semestateknika@umy.university
Website: http://http://journal.umy.ac.id/index.php/st
Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.