Modeling’s Effect of Irregular Building Structure with Vegetated Roof on Seismic Evaluation per ASCE 41-17

Authors

  • Muhammad Puja Fathurrachman Department of Civil Engineering, Universitas Gadjah Mada, Yogyakarta
  • Iman Satyarno Department of Civil Engineering, Universitas Gadjah Mada, Yogyakarta
  • Djoko Sulistyo Department of Civil Engineering, Universitas Gadjah Mada, Yogyakarta

DOI:

https://doi.org/10.18196/st.v27i2.22775

Keywords:

Modelling Assumptions, Irregular Building, Vegetated Roofs, Linear Evaluation, Structural Performance

Abstract

This study examines the seismic vulnerability of an irregular educational building with a vegetated roof in Yogyakarta using linear procedures based on ASCE 41-17. Modelling approaches differ Model 1 treats skylights and planter boxes as loads with straight roof slabs, while Models 2 and 3 use shells with sloping roof slabs. Vegetated roofs are featured in Models 1 and 2. The analysis, conducted at seismic hazard levels BSE-1N and BSE-2N using the ETABS program, evaluates structural components and compares Response Spectrum (RS) and Linear Time History (LTH) methods. Results show seismic weight variations of 1.20% to 15.04% between models. Model 1 fails to meet the criteria for modal analysis, while Models 2 and 3 do. The structural performance evaluation based on average demands at BSE-1N and BSE-2N levels varied from Immediate Occupancy to Life Safety performance. The LTH method in all models had higher acceptance ratios than the RS method.

References

ACI. (2014). Building code requirements for structural concrete (ACI 318M-14) and commentary (ACI 318RM-14). American Concrete Institute. Farmington Hills, Michigan.

Ahmed, M. M. M., Abdel Raheem, S. E., Ahmed, M. M., & Abdel Shafy, A. G. A. (2016). Irregularity effects on the seismic performance of l-shaped multi-story buildings. JES. Journal of Engineering Sciences, 44(5), 513–536. https://doi.org/10.21608/jesaun.2016.111440.

Algamati, M., Al-Sakkaf, A., Abdelkader, E. M., & Bagchi, A. (2023). Studying and analyzing the seismic performance of concrete moment-resisting frame buildings. CivilEng, 4(1), 34-54. https://doi.org/10.3390/civileng4010003

ASCE. (2016). ASCE 7-16 minimum design loads and associated criteria for buildings and other structures, American Society of Civil Engineers, Reston, Virginia.

ASCE. (2017). ASCE 41-17, Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, Reston, Virginia.

Badan Standardisasi Nasional. (2012). SNI 1726:2012 Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Bangunan dan Nonbangunan. Badan Standardisasi Nasional. Jakarta.

Badan Standarisasi Nasional. (2019). SNI 1726:2019 Tata cara perencanaan ketahanan gempa untuk struktur bangunan bangunan dan non bangunan. Jakarta: Badan Standarisasi Nasional.

Badan Standarisasi Nasional. (2019). SNI 2847:2019 Persyaratan beton structural untuk bangunan bangunan dan penjelasan. Jakarta: Badan Standarisasi Nasional.

Badan Standarisasi Nasional. (2020). SNI 1727:2020 Beban desain minimum dan kriteria terkait untuk bangunan bangunan dan struktur lain. Jakarta: Badan Standarisasi Nasional.

Badan Standarisasi Nasional. (2020). SNI 8899:2020 Tata cara pemilihan dan modifikasi gerak tanah permukaan untuk perencanaan bangunan tahan gempa. Jakarta: Badan Standarisasi Nasional.

Bogatinoski, Z., Arsova-Milosevska, G., & Trajanoska, B. (2013). Theoretical and experimental researches of rigid and semi-rigid beam column connections. Mechanical Engineering Scientific Journal, 31(1-2), 46-49.

CSI. (2017). CSI Analysis Reference Manual for SAP2000, ETABS, SAFE, and CSIBridge. Computer and Structures, Inc. United States of America.

CSI. (2020). ETABS integrated building design software version 20, User's Guide, CSI, United States of America.

FEMA. (2006). Next-generation performance-based seismic design guidelines. NEHRP. California, 1-9.

FEMA. (2015). NEHRP recommended seismic provisions for new buildings and other structures (FEMA P-1050-1). NEHRP. Washington, 1-7.

FEMA. (2018). Seismic evaluation of older concrete buildings for collapse potential (FEMA P-2018). NEHRP. California, 1.1-1.10.

Nady, O., Mahfouz, S. Y., & Taher, S. E.-D. F. (2022). Quantification of vertical irregularities for earthquake resistant reinforced concrete buildings. Buildings, 12(8), 1160. https://doi.org/10.3390/buildings12081160

Rudiyanto, B. (2023). Analisis konsep green roof dan pemodelan desain sederhana. Yogyakarta. Universitas Gadjah Mada.

Salamati, P., Ghasemi, M., & Memarian, H. (2017). Seismic performance of green roofs: A review. Sustainable Cities and Society, 30, 103-114.

Satyarno, I., Purbolaras, N., & Indra, R. (2012). Belajar SAP2000 Seri 2. Yogyakarta: Zamil Publishing.

Sazzad, MD. M., Azad, MD. S., Tariqul Islam, MD., & Rahman, F. I. (2017). Effect of mesh size of floor slab against lateral loads while using Etabs program. International Journal of Advanced Structures and Geotechnical Engineering, 6(1), 40-44.

Shelke, R. N., & Ansari, U. S. (2017). Seismic analysis of vertically irregular RC building frames. International Journal of Civil Engineering and Technology, 8(1), 155-169.

Tim Pusat Studi Gempa Nasional. (2022). Peta Deagregasi Bahaya Gempa Indonesia untuk Perencanaan dan Evaluasi Infrastruktur Tahan Gempa. Kementrian Pekerjaan Umum dan Perumahan Rakyat, 267-430.

Turker, H. (2020). A modified beam theory for bending of eccentrically supported beams. Bursa. Bursa Uludag University.

Zabihullah, P. S., & Aryan, M. Z. (2020). Effect of (vertical & horizontal) geometric irregularities on the seismic response of RC structures. International Journal on Emerging Technologies, 11(3), 965–974.

Downloads

Published

2024-11-26

How to Cite

Fathurrachman, M. P., Satyarno, I., & Sulistyo, D. (2024). Modeling’s Effect of Irregular Building Structure with Vegetated Roof on Seismic Evaluation per ASCE 41-17. Semesta Teknika, 27(2), 168–181. https://doi.org/10.18196/st.v27i2.22775

Issue

Section

Articles