Characteristics of Heat Absorbing Composite Layers of Galvalume Roof Reinforced with Seashell Waste on Temperature

Authors

  • Raden Dimas Akbar Ramadhan Department of Civil Engineering and Planning, Faculty of Engineering, Universitas Negeri Malang
  • Dian Ariestadi Department of Civil Engineering and Planning, Faculty of Engineering, Universitas Negeri Malang https://orcid.org/0000-0002-6082-1236

DOI:

https://doi.org/10.18196/st.v28i1.24720

Keywords:

Seashell Waste, Composite, Temperature, Galvalume Roof

Abstract

This research focuses on the characteristics provided by the composite layer applied to galvalume roof as a coating with the addition of seashell waste when subjected to temperature. Galvalume roof has a significant drawback where heat penetrates the house, causing discomfort. The primary objective of this study is to determine the characteristics of the seashell waste addition on the composite layer when exposed to heat. This research is using a true experimental method with graphic analysis, including galvalume specimens, 100% resin, weight fraction between the seashell waste and the composite layers 20%:80%, 30%:70%, 40%:60%, and 50%:50%. The results obtained from the research show that seashell waste has a major content of CaCO3 at 95,44%. Thermal conductivity testing reveals that the galvalume specimen has a thermal conductivity of 9,391 W/m°C, while 50%:50% has 0,24 W/m°C. In the temperature testing, it was found that the 50%:50% specimen has the ability to suppress the temperature by 5,49 °C compared to the galvalume specimen.

References

Bauer, M., Mösle, P., & Schwarz, M. (2010). Green building: Guidebook for sustainable architecture. In Green Building: Guidebook for Sustainable Architecture. https://doi.org/10.1007/978-3-642-00635-7

Cao, X., Zhang, R., Zhang, N., Chen, L., Chen, D., & Li, X. (2023). Performance improvement of lauric acid-1-hexadecanol eutectic phase change material with bio-sourced seashell powder addition for thermal energy storage in buildings. Construction and Building Materials, 366, 130223. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2022.130223

Fatimah, F., Juanda, J., & Santoso, I. (2019). Types of Roofs, Indoor Temperature and Humidity. JOURNAL OF ENVIRONMENTAL HEALTH: Journal and Application of Environmental Health Engineering, 16(1), 727–732. https://doi.org/10.31964/jkl.v16i1.108

Felipe-Sesé, M., Eliche-Quesada, D., & Corpas-Iglesias, F. A. (2011). The use of solid residues derived from different industrial activities to obtain calcium silicates for use as insulating construction materials. Ceramics International, 37(8), 3019–3028. https://doi.org/10.1016/j.ceramint.2011.05.003

Fombuena, V., Bernardi, L., Fenollar, O., Boronat, T., & Balart, R. (2014). Characterization of green composites from biobased epoxy matrices and bio-fillers derived from seashell wastes. Materials and Design, 57, 168–174. https://doi.org/10.1016/j.matdes.2013.12.032

Holman, V. (2010). Heat Transfer (10th Ed.). In Visual Resources (10th editi, Vol. 15, Nomor 3). McGraw-Hill, a business unit of the McGraw-Hill Companies, Inc. https://doi.org/10.1080/01973762.1999.9658510

Kurniawati, N. (1999). Determination of thermal conductivity (K) of several types of metals: Pure aluminum, stainless steel (18% Cr, 6% Ni), and carbon steel (0.5% C). Journal of Scientific Research, 5. https://doi.org/10.36706/jps.v0i5.370

Lee, S. ., & Chang, M. (2000). Indoor and outdoor air quality investigation at schools in Hong Kong. Chemosphere, 41(1–2), 109–113. https://doi.org/10.1016/S0045-6535(99)00396-3

Mousavi, S. R., Estaji, S., Kiaei, H., Mansourian-Tabaei, M., Nouranian, S., Jafari, S. H., Ruckdäschel, H., Arjmand, M., & Khonakdar, H. A. (2022). A review of electrical and thermal conductivities of epoxy resin systems reinforced with carbon nanotubes and graphene-based nanoparticles. Polymer Testing, 112, 107645. https://doi.org/https://doi.org/10.1016/j.polymertesting.2022.107645

Okoro, W., & Oyebisi, S. (2023). Mechanical and durability assessments of steel slag-seashell powder-based geopolymer concrete. Heliyon, 9(2), e13188. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e13188

Othman, H., Hisham, B., Bakar, A., Don, M. M., Azmi, M., & Johari, M. (2013). Cockle shell ash replacement for cement and filler in concrete. Malaysian Journal of Civil Engineering, 25(2), 201–211.

Oyejobi, D. O., Raji, S. A., Aina, S. T., & Siva, A. (2019). Physio-chemical and microstructural characteristics of selected pozzolanic materials for cement and concrete production. Nigerian Journal of Technological Development, 16(3), 111. https://doi.org/10.4314/njtd.v16i3.4

Rahmani, F., Robinson, M. A., & Barzegaran, M. R. (2021). Cool roof coating impact on roof-mounted photovoltaic solar modules at texas green power microgrid. International Journal of Electrical Power and Energy Systems, 130(November 2020), 106932. https://doi.org/10.1016/j.ijepes.2021.106932

Sahebian, S., & Mosavian, M. H. (2019). Thermal stability of CaCO3/polyethylene (PE) nanocomposites. Polymers and Polymer Composites, 27(7), 371–382. https://doi.org/10.1177/0967391119845994

Santoso, E. I. (2012). Kenyamanan termal indoor pada bangunan di daerah beriklim tropis lembab. Indonesian Green Technology Journal, 1(1), 13–19.

Swain, S. K., Dash, S., Kisku, S. K., & Singh, R. K. (2014). Thermal and Oxygen Barrier Properties of Chitosan Bionanocomposites by Reinforcement of Calcium Carbonate Nanopowder. Journal of Materials Science & Technology, 30(8), 791–795. https://doi.org/10.1016/j.jmst.2013.12.017

Talarosha, B. (2009). Menciptakan Kenyamanan Thermal Dalam Bangunan.

Vasanthkumar, P., Balasundaram, R., Senthilkumar, N., Palanikumar, K., Lenin, K., & Deepanraj, B. (2022). Thermal and thermo-mechanical studies on seashell incorporated Nylon-6 polymer composites. Journal of Materials Research and Technology, 21, 3154–3168. https://doi.org/10.1016/j.jmrt.2022.10.117

Yoon, H., Park, S., Lee, K. S., & Park, J. (2004). Oyster shell as substitute for aggregate in mortar. Waste Management & Research, 22, 158–170. https://doi.org/10.1177/0734242X04042456

Zhang, L., Deng, K. k., Nie, K. b., Wang, C. j., Xu, C., Shi, Q. x., Liu, Y., & Wang, J. (2023). Thermal conductivity and mechanical properties of graphite/Mg composite with a super-nano CaCO3 interfacial layer. iScience, 26(4), 106505. https://doi.org/10.1016/j.isci.2023.106505

Zhao, Y., Kikugawa, G., Kawagoe, Y., Shirasu, K., & Okabe, T. (2022). Molecular-scale investigation on relationship between thermal conductivity and the structure of crosslinked epoxy resin. International Journal of Heat and Mass Transfer, 198, 123429. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2022.123429

Downloads

Published

2025-06-05

How to Cite

Ramadhan, R. D. A., & Ariestadi, D. (2025). Characteristics of Heat Absorbing Composite Layers of Galvalume Roof Reinforced with Seashell Waste on Temperature. Semesta Teknika, 28(1), 103–112. https://doi.org/10.18196/st.v28i1.24720

Issue

Section

Articles