Numerical study of fluid flow characteristics across a lens wind turbine with vortex generators

Authors

  • Lohdy Diana Department of Power Plant Engineering, Politeknik Elektronika Negeri Surabaya
  • Joke Pratilastiarso Department of Power Plant Engineering, Politeknik Elektronika Negeri Surabaya
  • Arrad Ghani Safitra Department of Power Plant Engineering, Politeknik Elektronika Negeri Surabaya
  • Muhammad Ricky Ariza Department of Power Plant Engineering, Politeknik Elektronika Negeri Surabaya

DOI:

https://doi.org/10.18196/st.v28i1.25116

Keywords:

lens, brim, vortex generator, wind turbine

Abstract

Indonesia still needs the development of wind turbine technology to increase the utilization of wind potential. This research will design a wind farm using Lens Wind Turbine with the addition of a vortex generator on the brim surface (LWTvg). The purpose of this research is to produce Lens Wind Turbine (LWTvg) to achieve Green Economy. The vortex generators are put in brim surface with ratio variations z/h=4.5, z/h=2.5, and z/h=0.5. This research uses simulation method to analyze fluid characteristics. The simulation result shows that based on air velocity contour the LWTvg z/h=0.5 has higher air velocity when through the turbine than other variations. The fluid characteristics for air velocity, air pressure, and performance coefficient in top line and middle line are similar but the phenomena are different in bottom line. The number of vortex generators can intensify changes in wind flow velocity around the wind turbine.

References

Al-Quraishi, B. A., Asmuin, N. Z., Nemah, M. N., & Salih Meri, A. (2019). Experimental and simulation investigation for performance of a small-scale of bare and shrouded hawt. International Journal of Mechanical Engineering and Technology, 10(1), 434-449. http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=10&IType=1

Auliana Rahmawaty, S., Parmita, A. W. Y. P., Laksono, A. D. (2021). Analisa kekuatan tarik dan tekuk pada komposit fiberglas-polyester berpenguat serat gelas dengan variasi fraksi volume serat. Jurnal Teknik Mesin-ITI, 5(3), 146-155.

Chen, Y. J., & Shiah, Y. C. (2016). Experiments on the performance of small horizontal axis wind turbine with passive pitch control by disk pulley. Energies, 9(5), 353. https://doi.org/10.3390/en9050353

Darpe, M. M., Bandekar, S. K., & Vanjari, S. V. (2020). Design and optimization of a brim augmented wind turbine (wind lens turbine) using CFD. International Research Journal of Engineering and Technology (IRJET), 7(4), 962-968.

DAVOS. Dirjen EBTKE. (2023). Dirjen EBTKE Paparkan Pemenuhan Kebutuhan Listrik Indonesia Melalui Pemanfaatan EBT.

Ellerbrok, J. S., Farwig, N., Peter, F., & Voigt, C. C. (2024). Forest bat activity declines with increasing wind velocity in proximity of operating wind turbines. Global Ecology and Conservation, 49, e02782. https://doi.org/10.1016/j.gecco.2023.e02782

Gao, Y., Zong, Z., Zou, L., Takagi, S., & Jiang Z. (2018). Numerical simulation of vortex-induced vibration of a circular cylinder with different surface roughnesses. Marine Structures, 57, 165-179. https://doi.org/10.1016/j.marstruc.2017.10.007

Hansen, M. O. L., Velte, C. M., Øye, S., Hansen, R., Sørensen, N. N., Madsen J., & Mikkelsen, R. (2016). Aerodynamically shaped vortex generators. Wind Energy, 19(3), 563–567. https://doi.org/10.1002/we.1842

Hashem, I., Hafiz, A. A., & Mohamed, M. H. (2022). Characterization of aerodynamic performance of wind-lens turbine using high-fidelity CFD simulations. Frontiers in Energy, 16, 661-682. https://doi.org/10.1007/s11708-020-0713-0

KEMENTERIAN ESDM. Media Indonesia. (2022). Potensi EBT di Indonesia Melimpah.

Kundu, P., Sarkar, A., & Nagarajan, V. (2019). Improvement of performance of S1210 hydrofoil with vortex generators and modified trailing edge, Renewable Energy, 142, 643-657. https://doi.org/10.1016/j.renene.2004.148

Maizi, M., Mohamed, M. H., Dizene, R., & Mihoubi, M. C. (2018). Noise reduction of a horizontal wind turbine using different blade shapes. Renewable Energy, 117, 242–256. https://doi.org/10.1016/j.renene.2017.10.058

Novri, R. R. (2021). The analisis potensi energi angin tambak untuk menghasilkan energi listrik. Journal of Research and Education Chemistry, 3(2), 96. https://journal.uir.ac.id/index.php/jrec/article/view/7165

Ohya, Y., Karasudani T., Nagai, T., & Watanabe, K. (2017). Wind lens technology and its application to wind and water turbine and beyond. Renewable Energy and Environmental Sustainability, 2(2). https://doi.org/10.1051/rees/2016022

Pellegrini M., Guzzini A., & Saccani C. (2021). Experimental measurements of the performance of a micro-wind turbine located in an urban area. Energy Reports, 7, 3922–34. https://doi.org/10.1016/j.egyr.2021.05.081

Petrus Sidabutar, S., & Arwinda Setyaningrum, R. (2021). Perancangan bilah inverse taper berbahan styrofoam dengan airfoil naca 4412, Rotor, 14(2), 70-74.

Prasad, K. R., Manoj Kumar, V., Swaminathan, G., & Loganathan, G. B. (2020). Computational investigation and design optimization of a duct augmented wind turbine (DAWT). Materials Today: Proceedings, 22(3), 1186–1191. https://doi.org/10.1016/j.matpr.2019.12.116

Pratilastiarso, J., Nugroho, S., Tridianto, E., & Syifa, R. I. (2018). Experimental study on horizontal axis wind turbine with splitted winglets. IOP Conference Series: Earth and Environmental Science, 105, 012102. https://doi.org/ 10.1088/1755-1315/105/1/012102

Rinker, J. M., Hansen, M. H., & Larsen, T. J. (2018). Calibrating a wind turbine model using diverse datasets. Journal of Physics: Conference Series, 1037(6), 062026. https://doi.org/10.1088/1742-6596/1037/6/062026.

Ruifang, J., Zhao, Z., Liu, H., Wang, T., Chen, M. J. F., & Wang, D. (2022). Numerical study on the influence of vortex generators on wind turbine aerodynamic performance considering rotational effect. Renewable Energy, 186, 730-741. https://doi.org/10.1016/j.renene.2022.01.026

Saputra, I. (2021). Analisa daya pembangkit listrik pada pesisir Pantai Labu. Jurnal Ilmiah Mahasiswa Teknik, 1(3), 1-13.

Shomad, M. A., & Hidayat, F. R. (2021). Vertical blade fiberglass composite for wind turbine power plant application. Journal of Robotics and Control (JRC), 2(3):148–52. https://doi.org/10.18196/jrc.2369

Sikien, E. R., Abdullah, A., Zulkafli M. F., & Rahim, M. Z. (2018). The effects of vortex shedding on the aerodynamic performance of airfoils. ARPN Journal of Engineering and Applied Sciences, 13(24), 9344-9351.

Silva, P. A. S. F., Tsoutsanis, P., Vaz, J. R. P., & Macias, M. M. (2024). A comprehensive CFD investigation of tip vortex trajectory in shrouded wind turbines using compressible RANS solver. Energy, 294, 130929. https://doi.org/10.1016/j.energy.2024.130929

Wijayanto, D. S., Soenarto, S., Triyono, M. B., & Sangidzun, A. (2021). Experimental study of the effect of winglets on horizontal wind turbine (HAWT) performance. International Energy Journal, 21(3), 375-384.

Yan Y., Eldad A., John W., & Jiahuan C. (2019). CFD analysis for the performance of micro-vortex generator on aerofoil and vertical axis turbine. Journal of Renewable and Sustainable Energy, 11(4), 043302. https://doi.org/10.1063/1.5110422

Zargar, O. A., Lin, T., Zebua, A. G., Lai, T. J., Shih, Y. C., Hu, S. C., & Leggett, G. (2022) The effects of surface modification on aerodynamic characteristics of airfoil DU 06 W 200 at low Reynolds numbers. International Journal of Thermofluids, 16, 100208. https://doi.org/10.1016/j.ijft.2022.100208

Downloads

Published

2025-05-26

How to Cite

Diana, L., Pratilastiarso, J., Safitra, A. G., & Ariza, M. R. (2025). Numerical study of fluid flow characteristics across a lens wind turbine with vortex generators. Semesta Teknika, 28(1), 90–102. https://doi.org/10.18196/st.v28i1.25116

Issue

Section

Articles