Photovoltaic Efficiency and Technology Innovation in Renewable Energy: A Systematic Literature Review
DOI:
https://doi.org/10.18196/st.v28i1.25189Keywords:
Efficiency, Photovoltaic Technology, Systematic Literature Review.Abstract
Solar photovoltaic (PV) technology plays a critical role in advancing renewable energy by converting sunlight into electricity. However, its effectiveness relies heavily on continuous innovation to enhance efficiency. Indonesia’s transition towards renewable energy is driven by significant solar potential, yet challenges persist in adopting optimal PV technologies under tropical conditions. This study conducts a Systematic Literature Review (SLR) of 41 journal articles published between 2020 and 2024, using the PRISMA method and focusing on the most-cited works. Results show that inorganic PV technologies remain dominant due to high efficiency (up to 38.9%), while organic PV offers flexibility and cost advantages despite lower efficiency (1.5%–31%). Key innovations include hybrid systems and advanced materials such as quinoxaline-based structures. The study identifies the most viable PV technologies for tropical regions and highlights the growing trend in global research. These findings provide valuable insights for policymakers and researchers in developing sustainable solar energy strategies.
References
Alshareef, M. J. (2022). An effective falcon optimization algorithm based MPPT under partial shaded photovoltaic systems. IEEE Access, 10, 131345–131360. https://doi.org/10.1109/ACCESS.2022.3226654
Azimi, N., Davoodbeygi, Y., Rahimi, M., Ahmadi, S., Karami, E., & Roshani, M. (2022). Optimization of thermal and electrical efficiencies of a photovoltaic module using combined PCMs with a thermo-conductive filler. Solar Energy, 231, 283–296. https://doi.org/10.1016/j.solener.2021.11.066
Belloni, E., Massaccesi, A., Moscatiello, C., & Martirano, L. (2024). Implementation of a new solar-powered street lighting system: Optimization and technical-economic analysis using artificial intelligence. IEEE Access, 12(April), 46657–46667. https://doi.org/10.1109/ACCESS.2024.3382191
Cabal, R., Veschetti, Y., Sanzone, V., Manuel, S., Gall, S., Barbier, F., Ozanne, F., Bettinelli, A., Gillot, C., Novel, B., & Ribeyron, P. J. (2013). Industrial process leading to 19.8% on n-type CZ silicon. Energy Procedia, 33(0), 11–17. https://doi.org/10.1016/j.egypro.2013.05.034
Chellakhi, A., & Beid, S. E. (2024). High-efficiency MPPT strategy for PV Systems: Ripple-free precision with comprehensive simulation and experimental validation. Results in Engineering, 24, 103230. https://doi.org/10.1016/j.rineng.2024.103230
Chen, Z., Ge, J., Song, W., Tong, X., Liu, H., Yu, X., Li, J., Shi, J., Xie, L., Han, C., Liu, Q., & Ge, Z. (2024). 20.2% efficiency organic photovoltaics employing a π-extension quinoxaline-based acceptor with ordered arrangement. Advanced Materials, 36(33), 1–10. https://doi.org/10.1002/adma.202406690
den Elzen, M. G. J., Dafnomilis, I., Forsell, N., Fragkos, P., Fragkiadakis, K., Höhne, N., Kuramochi, T., Nascimento, L., Roelfsema, M., van Soest, H., & Sperling, F. (2022). Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach. Mitigation and Adaptation Strategies for Global Change, 27(6). https://doi.org/10.1007/s11027-022-10008-7
Diab, A. A. Z., Sultan, H. M., Aljendy, R., Al-Sumaiti, A. S., Shoyama, M., & Ali, Z. M. (2020). Tree growth based optimization algorithm for parameter extraction of different models of photovoltaic cells and modules. IEEE Access, 8, 119668–119687. https://doi.org/10.1109/ACCESS.2020.3005236
DIab, A. A. Z., Sultan, H. M., Do, T. D., Kamel, O. M., & Mossa, M. A. (2020). Coyote optimization algorithm for parameters estimation of various models of solar cells and PV modules. IEEE Access, 8, 111102–111140. https://doi.org/10.1109/ACCESS.2020.3000770
Giglio, E., Luzzani, G., Terranova, V., Trivigno, G., Niccolai, A., & Grimaccia, F. (2023). An efficient artificial intelligence energy management system for urban building integrating photovoltaic and storage. IEEE Access, 11(February), 18673–18688. https://doi.org/10.1109/ACCESS.2023.3247636
Imelda, H., & Soejachmoen, M. H. (2023). Determined Contribution (NDC). Indonesia Research Institute for Decarbonization.
Ismaeel, A. A. K., Houssein, E. H., Oliva, D., & Said, M. (2021). Gradient-based optimizer for parameter extraction in photovoltaic models. IEEE Access, 9, 13403–13416. https://doi.org/10.1109/ACCESS.2021.3052153
Khelifa, A., El Hadi Attia, M., Harby, K., Elnaby Kabeel, A., Abdel-Aziz, M. M., & Abdelgaied, M. (2024). Experimental and economic evaluation on the performance improvement of a solar photovoltaic thermal system with skeleton-shaped fins. Applied Thermal Engineering, 248. https://doi.org/10.1016/j.applthermaleng.2024.123180
Khodadadi, M., & Sheikholeslami, M. (2022). Heat transfer efficiency and electrical performance evaluation of photovoltaic unit under influence of NEPCM. International Journal of Heat and Mass Transfer, 183, 122232. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122232
Lazaroiu, A. C., Gmal Osman, M., Strejoiu, C. V., & Lazaroiu, G. (2023). A comprehensive overview of photovoltaic technologies and their efficiency for climate neutrality. Sustainability (Switzerland), 15(23). https://doi.org/10.3390/su152316297
Li, D. (2024). Green finance, fossil fuel efficiency, and sustainable development in OECD. Resources Policy, 98(May), 105306. https://doi.org/10.1016/j.resourpol.2024.105306
Li, G., Xie, S., Wang, B., Xin, J., Li, Y., & Du, S. (2020). Photovoltaic power forecasting with a hybrid deep learning approach. IEEE Access, 8, 175871–175880. https://doi.org/10.1109/ACCESS.2020.3025860
Ma, R., Zhou, K., Sun, Y., Liu, T., Kan, Y., Xiao, Y., Dela Peña, T. A., Li, Y., Zou, X., Xing, Z., Luo, Z., Wong, K. S., Lu, X., Ye, L., Yan, H., & Gao, K. (2022). Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter, 5(2), 725–734. https://doi.org/10.1016/j.matt.2021.12.002
Mi, P., Zhang, J., Han, Y., & Guo, X. (2021). Study on energy efficiency and economic performance of district heating system of energy saving reconstruction with photovoltaic thermal heat pump. Energy Conversion and Management, 247(September), 114677. https://doi.org/10.1016/j.enconman.2021.114677
Nazerian, V., Asadollahi, H., & Sutikno, T. (2023). Improving the efficiency of photovoltaic cells embedded in floating buoys. International Journal of Electrical and Computer Engineering, 13(6), 5986–5999. https://doi.org/10.11591/ijece.v13i6.pp5986-5999
Obukhov, S., Ibrahim, A., Zaki Diab, A. A., Al-Sumaiti, A. S., & Aboelsaud, R. (2020). Optimal performance of dynamic particle swarm optimization based maximum power trackers for stand-alone PV system under partial shading conditions. IEEE Access, 8, 20770–20785. https://doi.org/10.1109/ACCESS.2020.2966430
Panagoda, L. P. S. S., Sandeepa, R. A. H. T., Perera, W. A. V. T., Sandunika, D. M. I., Siriwardhana, S. M. G. T., Alwis, M. K. S. D., & Dilka, S. H. S. (2023). Advancements in Photovoltaic (PV) technology for solar energy generation. Journal of Research Technology and Engineering, 4(3), 30–72.
Pourasl, H. H., Barenji, R. V., & Khojastehnezhad, V. M. (2023). Solar energy status in the world: A comprehensive review. Energy Reports, 10, 3474–3493. https://doi.org/10.1016/j.egyr.2023.10.022
Rajpar, A. H., Bashir, M. B. A., Salih, E. Y., Ahmed, E. M., & Soliman, A. M. (2024). Efficiency enhancement of photovoltaic-thermoelectric generator hybrid module by heat dissipating technique. Results in Engineering, 24, 102907. https://doi.org/10.1016/j.rineng.2024.102907
Sharma, D., Mehra, R., & Raj, B. (2021). Comparative analysis of photovoltaic technologies for high efficiency solar cell design. Superlattices and Microstructures, 153, 106861. https://doi.org/10.1016/j.spmi.2021.106861
Siregar, Y. I. (2024). Pathways towards net-zero emissions in Indonesia’s energy sector. Energy, 308(July), 133014. https://doi.org/10.1016/j.energy.2024.133014
Sohani, A., & Sayyaadi, H. (2020). Providing an accurate method for obtaining the efficiency of a photovoltaic solar module. Renewable Energy, 156, 395–406. https://doi.org/10.1016/j.renene.2020.04.072
Tang, J., Ni, H., Peng, R. L., Wang, N., & Zuo, L. (2023). A review on energy conversion using hybrid photovoltaic and thermoelectric systems. Journal of Power Sources, 562. https://doi.org/10.1016/j.jpowsour.2023.232785
Tyagi, V. V., Kaushik, S. C., & Tyagi, S. K. (2012). Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renewable and Sustainable Energy Reviews, 16(3), 1383–1398. https://doi.org/10.1016/j.rser.2011.12.013
Verma, M., & Gautam, S. (2023). Photovoltaic efficiency enhancement via magnetism. Journal of Magnetism and Magnetic Materials, 588, 171436. https://doi.org/10.1016/j.jmmm.2023.171436
Xian, K., Liu, Y., Liu, J., Yu, J., Xing, Y., Peng, Z., Zhou, K., Gao, M., Zhao, W., Lu, G., Zhang, J., Hou, J., Geng, Y., & Ye, L. (2022). Delicate crystallinity control enables high-efficiency P3HT organic photovoltaic cells. Journal of Materials Chemistry A, 10(7), 3418–3429. https://doi.org/10.1039/d1ta10161g
Yang, H., & Wang, H. (2022). Numerical simulation of the dust particles deposition on solar photovoltaic panels and its effect on power generation efficiency. Renewable Energy, 201, 1111–1126. https://doi.org/10.1016/j.renene.2022.11.043
Yue, C., Xu, P., Yao, W., Cao, W., Wang, Y., Li, X., & Kong, X. (2024). New models of solar photovoltaic power generation efficiency based on spectrally responsive bands. Applied Energy, 375, 123936. https://doi.org/10.1016/j.apenergy.2024.123936
Zidane, T. E. K., Aziz, A. S., Zahraoui, Y., Kotb, H., Aboras, K. M., Kitmo, & Jember, Y. B. (2023). Grid-Connected Solar PV Power Plants Optimization: A Review. IEEE Access, 11, 79588–79608. https://doi.org/10.1109/ACCESS.2023.3299815
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Salsa Fatiha Rahma, Dalilo Yogi Essy Pratama, Fuad Prabudewo Rohwidianto, Muhammad Bagus Sanjaya

This work is licensed under a Creative Commons Attribution 4.0 International License.
Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).