Evaluating Flow Resistance in Straight Channels Using 2-Point Velocity Measurements

Authors

  • Ali Nursamsi Dahlan Department of Civil Engineering, Universitas Gadjah Mada, Yogyakarta https://orcid.org/0009-0002-3883-285X
  • Bambang Agus Kironoto Department of Civil Engineering, Universitas Gadjah Mada, Yogyakarta
  • Adam Pamudji Raharjo Department of Civil Engineering, Universitas Gadjah Mada, Yogyakarta

DOI:

https://doi.org/10.18196/st.v28i1.25841

Keywords:

Manning, Composite, Velocity, Lotter

Abstract

Accurately measuring Manning’s roughness coefficient is crucial for enhancing the precision of hydraulic models and supporting informed decision-making in water resource management. Traditionally, this coefficient is determined using the cross-sectional mean velocity, which may introduce inaccuracies due to its approximate nature. However, estimating Manning’s roughness coefficient through flow velocity distribution analysis remains a relatively underexplored approach. This study aims to improve the accuracy of estimating Manning’s roughness coefficient by analyzing the velocity distribution at two vertical positions within the flow: z/H = 0.2 and z/H = 0.8. Secondary velocity data were obtained from four locations to support this investigation: a laboratory flume, the Selokan Mataram irrigation channel, the Kuning River, and the Opak River. The research methodology involves simplifying and applying analytical equations needed to determine Manning’s roughness coefficient based on the velocity profile. The results indicate that, in natural river systems, Manning’s roughness coefficient ranges from 0.035 to 0.095 at z/H = 0.8 and z/H = 0.2 and from 0.032 to 0.085 at z/H = 0.4 and z/H = 0.2.

References

Aberle, J., & Smart, G. M. (2010). The influence of roughness structure on flow resistance on steep slopes. Journal of Hydraulic Research, 41(3), 37–41. https://doi.org/10.1080/00221680309499971

Alrammahi, F. S. (2024). Identification of the changes in Manning’s coefficient for Erbil Basin using the ArcGIS, HEC-RAS, and remote sensing images. AIP Conference Proceedings, 3249(1). https://doi.org/10.1063/5.0236579

Alvis, A. D., Luce, C. H., Istanbulluoglu, E., Black, T., Dieu, J., & Black, J. (2024). Using additional roughness to characterize erosion control treatment effectiveness in roadside ditch lines. Earth Surface Processes and Landforms, 49(4), 1255–1272. https://doi.org/10.1002/esp.5763

Amsie, A. B., Ayalew, A. T., Mada, Z. M., & Finsa, M. M. (2024). Acclimatize experimental approach to adjudicate hydraulic coefficients under different bed material configurations and slopes with and without weir. Heliyon, 10(11). https://doi.org/10.1016/j.heliyon.2024.e32162

Andayono, T. (2003). Kajian lokasi pengambilan sampel terhadap penentuan debit sedimen suspensi rata-rata pada aliran dengan dan tanpa angkutan bed load [Universitas Gadjah Mada]. https://etd.repository.ugm.ac.id/penelitian/detail/21729

Bhargav, A. M., Suresh, R., Tiwari, M. K., Trambadia, N. K., Chandra, R., & Nirala, S. K. (2024). Optimization of Manning’s roughness coefficient using 1-dimensional hydrodynamic modelling in the perennial river system: A case of lower Narmada Basin, India. Environmental Monitoring and Assessment, 196(8), 743. https://doi.org/10.1007/s10661-024-12883-w

Boyer, M. (1954). Estimating the manning coefficient from an average bed roughness in open channels. Transactions, American Geophysical Union, 35(6), 957–961. https://doi.org/10.1029/TR035i006p00957

Chengye, L., Yang, P., Shiqi, L., Xianliang, Y., & Lishuang., Y. (2024). Roughness inversion method for river unsteady flow simulations based on deep learning. Journal of Hydroelectric Engineering, 43(10), 42–52.

Colebrook, C. F., & White, C. M. (1938). Corrigendum. the Reduction of Carrying Capacity of Pipes With Age. Journal of the Institution of Civil Engineers, 9(7), 1. https://doi.org/10.1680/ijoti.1938.14612

Einstein, H. A., & Banks, R. B. (1950). Fluid resistance of composite roughness. Transactions, American Geophysical Union, 31(4), 603. https://doi.org/10.1029/TR031i004p00603

Ezzeldin, R., & Abd-Elmaboud, M. (2024). Modeling flow resistance and geometry of dunes bed form in alluvial channels using hybrid RANN–AHA and GEP models. International Journal of Sediment Research, 39(6), 885–902. https://doi.org/10.1016/j.ijsrc.2024.08.002

Giarto, R. B. (2016). DISTRIBUSI KONSENTRASI SEDIMEN SUSPENSI PADA SUNGAI ALAMI (Studi Kasus Sungai Opak dan Sungai Kuning Yogyakarta) [Universitas Gadjah Mada]. https://etd.repository.ugm.ac.id/

Ikhsan, C. (2005). Pengukuran distribusi kecepatan dan konsentrasi sedimen suspensi pada aliran seragam tampang segi empat Di Saluran Induk Mataram, Yogyakarta [Universitas Gadjah Mada]. https://etd.repository.ugm.ac.id/

Kiptiah, M. (2016). Distribusi Kecepatan Aliran Sedimen Suspensi pada Sungai Alami (Studi kasus sungai Opak dan sungai Kuning di Yogyakarta) [Universitas Gadjah Mada]. https://etd.repository.ugm.ac.id/penelitian/detail/103480

Kironoto, B. A., & Graf, W. H. (1994). Turbulence characteristics in rough uniform open-channel flow. Proceedings of the Institution of Civil Engineers: Water, Maritime and Energy, 106(4), 333–344. https://doi.org/10.1680/iwtme.1995.28114

Kironoto, B. A., & Graf, W. H. (1995). Turbulence characteristics in rough non-uniform open-channel flow. Proceedings of the Institution of Civil Engineers: Water, Maritime and Energy, 112(4), 336–348. https://doi.org/10.1680/iwtme.1995.28114

Lotter, G. K. (1933). Considerations on hydraulic design of channels with different roughness of walls. Transactions, All-Union Scientific Research Institute of Hydraulic Engineering, Leningrad, 9, 238–241.

Maini, M., Kironoto, B. A., Istiarto, & Rahardjo, A. P. (2024). Evaluating Manning’s Roughness Coefficient for Flows with Equilibrium and Non-equilibrium Sediment Transport. Jordan Journal of Civil Engineering, 18(1), 65–80. https://doi.org/10.14525/JJCE.v18i1.06

Manning, R. (1891). On the flow of water in open channels and pipes. Ireland, Transactions of the Institution of Civil Engineers Of, 20, 161–207.

Mardi, M., & Murmu, S. K. (2024). An experimental study of Manning’s roughness coefficient with an Acoustic Doppler Current Profiler (ADCP) method of the River Ganga at Gandhi-Ghat Site, Patna, India. Journal of The Institution of Engineers (India): Series A, 105(4), 987–1001. https://doi.org/10.1007/s40030-024-00838-w

Nindito, D. A. (2003). Kajian Pengambilan Sampel Sedimen Suspensi Rata-Rata Melalui Pengukuran 1, 2 Dan 3 Titik; Dan Pengaruhnya Terhadap Lokasi Pengambilan Sampel Arah Transversal. Universitas Gadjah Mada.

Pandey, R., Jayanth, G. R., & Kumar, M. S. M. (2024). Enhancing Robust Control of Irrigation Canal Systems with Quantitative Feedback Theory (QFT). 2024 6th International Conference on Electrical, Control and Instrumentation Engineering (ICECIE), 1–8. https://doi.org/10.1109/ICECIE63774.2024.10815638

Rezaei Rad, H., Ebrahimian, H., Liaghat, A., Khalaji, F., & Shabani Arani, M. (2024). Temporal variation of Manning roughness coefficient in furrow irrigation and its relationship with various field parameters. Applied Water Sciences, 15(1), 1–19. https://doi.org/10.1007/s13201-024-02334-9

Sessions, V., & Valtorta, M. (2006). The effects of data quality on machine learning algorithms. Proceedings of the 2006 International Conference on Information Quality, ICIQ 2006, 132(January), 102549. https://doi.org/10.1016/j.is.2025.102549

Yang, S.-Q., & Tan, S.-K. (2008). Flow Resistance over Mobile Bed in an Open-Channel Flow. Journal of Hydraulic Engineering, 134(7), 937–947. https://doi.org/10.1061/(asce)0733-9429(2008)134:7(937)

Yang, S. Q., Tan, S. K., & Lim, S. Y. (2005). Flow resistance and bed form geometry in a wide alluvial channel. Water Resources Research, 41(9), 1–8. https://doi.org/10.1029/2005WR004211

Downloads

Published

2025-05-20

How to Cite

Dahlan, A. N., Kironoto, B. A., & Raharjo, A. P. (2025). Evaluating Flow Resistance in Straight Channels Using 2-Point Velocity Measurements. Semesta Teknika, 28(1), 47–61. https://doi.org/10.18196/st.v28i1.25841

Issue

Section

Articles