Simulasi CFD Aliran Stratified Air-Udara pada Pipa Horisontal

Authors

  • Sukamta Sukamta Universitas Muhammadiyah Yogyakarta http://orcid.org/0000-0001-9792-3087
  • Thoharudin Thoharudin Universitas Muhammadiyah Yogyakarta
  • Dedy Melianto Nugroho Universitas Muhammadiyah Yogyakarta

DOI:

https://doi.org/10.18196/st.212227

Keywords:

Two-phase flow, stratified, CFD, flow pattern

Abstract

Two-phase flow can be found in industries, such as petroleum, electricity generation. In geothermal power plants, two-phase flow occurs from a mixture of water and steam which should be avoided in the piping system because it can cause equipment damage in the operating system. Therefore, an operator and engineer need a knowledge of flow patterns, phenomena and characteristics of the two-phase flow. One of the methods to predict the flow pattern is ud\sing the Computational Fluid Dynamic (CFD). This CFD simulation was modeled using Ansys Fluent 15.0 software to determine the changes of Stratified flow characteristics. The model used is Volume of Fluid (VOF). The fluid type is water and air. The variation of superficial water velocity JL of 0.025 m/s - 0.1 m/s while the superficial air velocity (JG) of 0.05 m/s - 1 m/s. The pipe used is an acrylic of 19 mm diameter and length of 1000 mm. The simulation results show that: (1). Stratified flow occurred for the low velocity of the liquid and gas phases. It was shown by the water and air are clearly separated. (2). Flow patterns are not stable, but it can change depending on the superficial velocity of gas and water. (3). The larger of JG causes the wave height because of Bernoulli’s effect so that it will make the stratified wavy or ripple flow pattern. (4). The frequency of stratified-wavy and ripple waves will tend to decrease when the JL increases, while the effect of JG is insignificant. Furthermore, it can be concluded that the speed of gas must be regulated so as not too large to the speed of water.

References

Abbasi, Mohammad and Zahra. B. (2014). Analytical Simulation Of Flow and Heat Transfer of Two-Phase Nanofluid (Stratified Flow Regime), International Journal of Chemical Engineering, 1 :7.

Desamala, Anand. B., Anjali D., Vinayak V., Bharath K. G., Ashok K. D., Tapas K. M. (2013). CFD Simulation and Validation of Flow Pattern Transition Boundaries during Moderately Viscous Oil-Water Two-Phase Flow through Horizontal Pipeline. Journal of World Academy of Science, Engineering and Technology, pp. 1150-1155.

Gunawan, D., Akhmad Z. H., Indarto. (2015). Studi Eksperimen Mengenai Fluktuasi Tekanan Dan Tegangan Geser Antar Muka Pada Aliran Stratified Air-Udara Pada Pipa Horizontal”. Vol. 10, No. 1, pp. 32-40.

Hudaya, A. Z., Indarto., Deendarlianto. (2013). Penentuan Sub-sub Daerah Aliran Stratified Udara-Air pada Pipa Horisontal Menggunakan Constant Electric Current method (CECM)”. Jurnal Simetris. Vol. 14, No. 1, pp. 49-57.

Korawan, Agus. D., (2015). Pola Aliran Dua Fase (Air-Udara) Pada Pipa Horisontal Dengan Variasi Kecepatan Superfisial Air. Jurnal Mekanika. Vol. 14, No. 1, pp. 57-63.

Mazumder, Quamrul. H., (2012). CFD Analysis of Single and Multiphase Flow Characteristics in Elbow. Jurnal of Scientific Research, Engineering, Vol. 4, pp. 210-214.

O.Shoham, Y. Taitel, Stratified turbulent–turbulent gas–liquid flow in horizontal and inclined pipes, AIChE J. 30 (1984) 377–385.

R.Issa, (1988). Prediction of turbulent, stratified, two-phase flow in inclined pipes and channel, Int. J. Multiphase Flow 14 141–154

Sampaio, P. de, Faccini, J., Transfer, J. S.-J. of H. and M., & 2008, undefined. (n.d.). Modelling of stratified gas–liquid two-phase flow in horizontal circular pipes. Elsevier. Retrieved from https://www.sciencedirect.com/science/article/pii/S0017931007006126

Santoso, B., Fitroh D. R., Indarto, Deendarlianto, Thomas S. W., (2012). Fluktuasi Beda Tekanan Dari Pola Aliran Slug Air-Udara Pada Aliran Dua Fase Searah Pipa Horizontal. Jurnal Teknik Mesin Rotasi. Vol. 14, No. 2, pp. 1-6.

Sukamta, Indarto, Purnomo, Tri A. R. (2010). Identifikasi Pola Aliran Dua Fasa Uap-Kondensat berdasarkan Pengukuran Beda Tekanan Pada Pipa Horisontal. Jurnal Ilmiah Semesta Teknika. Vol. 13, No. 1, pp. 83-94.

Terzuoli F., M. C. Galassi., D. Mazzini., F. D’ Auria. (2008). CFD Code Validation Against Stratified Air-Water Flow Experimental Data. Hindawi Publishing Corporation Science and Technology Of Nuclear Installations. pp. 1- 7.

Downloads

Published

2018-12-20

How to Cite

Sukamta, S., Thoharudin, T., & Nugroho, D. M. (2018). Simulasi CFD Aliran Stratified Air-Udara pada Pipa Horisontal. Semesta Teknika, 21(2), 206–215. https://doi.org/10.18196/st.212227