Perkiraan Masa Tunggu Alumni Mendapatkan Pekerjaan Menggunakan Metode Prediksi Data Mining Dengan Algoritma Naive Bayes Classifier
DOI:
https://doi.org/10.18196/st.212225Keywords:
Forecasting the grace period getting the job, data mining, Naive Bayes Classifier, RapidMinerAbstract
Student and Alumni data Universitas Muhammadiyah Yogyakarta is very common, and one of these is the alumni data obtained from work after the completion of undergraduate studies. Former students are given jobs caused or influenced by a range of factors. This research aims to have the grace period Classification or old alumni gain positions by triggering a process of data extraction and using the Bayes naïve classification algorithm. The algorithms used later succeeded in predicting sooner or later to get a job, the predictive results alumni can be used to make decisions to improve the quality of a university. Research on the support system using several parameters, i.e., gender, faculty, GPA, year of graduation, and job status. The data used are as much as 435, including seven years of 2011-2014 volume. The results of this study have the accuracy level of former students having the grace period come to 71% and of the calculated results of the predictions of the former students obtaining a job at Universitas Muhammadiyah Yogyakarta of the year 2011-2014 the Ensure that the work is carried out more quickly with the status of the slow to deliver the work
References
Defiyanti, Sofi, and Mohamad Jajuli. (2015). “Integrasi Metode Klasifikasi Dan Clustering Dalam Data Mining.” Konferensi Nasional Informatika (KNIF), 39–44.
Fithri, Diana Laily, and Eko Darmanto. (2014). “Sistem Pendukung Keputusan Untuk Memprediksi Kelulusan Mahasiswa Menggunakan Metode Nave Bayes.” In . Muria Kudus University.
Hastuti, Khafiizh. (2012). “Analisis Komparasi Algoritma Klasifikasi Data Mining Untuk Prediksi Mahasiswa Non Aktif.” Semantik 2 (1).
Jananto, Arief. (2013). “Algoritma Naive Bayes Untuk Mencari Perkiraan Waktu Studi Mahasiswa.” Teknologi Informasi DINAMIK 18 (1): 9–16.
Lumenta, Arie SM, and Agustinus Jacobus. (2017). “Prediksi Masa Studi Mahasiswa Dengan Menggunakan Algoritma Naïve Bayes.” Jurnal Teknik Informatika Universitas Sam Ratulangi 11 (1).
Murtopo, Aang Alim. (2016). “Prediksi Kelulusan Tepat Waktu Mahasiswa STMIK YMI Tegal Menggunakan Algoritma Naïve Bayes.” CSRID (Computer Science Research and Its Development Journal) 7 (3): 145–54.
Ridwan, Mujib, Hadi Suyono, and M Sarosa. (2013). “Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier.” Eeccis 7 (1): 59–64. https://doi.org/10.1038/hdy.2009.180.
Sabna, Eka, and Muhardi Muhardi. (2016). “Penerapan Data Mining Untuk Memprediksi Prestasi Akademik Mahasiswa Berdasarkan Dosen, Motivasi, Kedisiplinan, Ekonomi, Dan Hasil Belajar.” Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi Informasi 2 (2): 41–44.
Saleh, Alfa. (2015). “Implementasi Metode Klasifikasi Naive Bayes Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga.” Creative Information Technology Journal 2 (3): 207–17.
Yuda, Nugroho Septian. (2014). “Data Mining Menggunakan Algoritma Naïve Bayes Untuk Klasifikasi Kelulusan Mahasiswa Universitas Dian Nuswantoro.(Studi Kasus: Fakultas Ilmu Komputer Angkatan 2009).” Skripsi, Fakultas Ilmu Komputer.
Downloads
Published
How to Cite
Issue
Section
License
Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).