Deteksi Kecacatan Permukaan Buah Manggis Menggunakan Metode Deep Learning dengan Konvolusi Multilayer
Abstract
Mangosteen is one of Indonesian potential export fruits. Nevertheless, mangosteens quality is compulsary. A good quality fruit surface is needed in export fruit. This is the reason of this research to detect the flaw in rind surface, particularly mangosteen. Some researcher has been done many type of image processing for fruit detection. However, there aren’t any research for mangosteen rind detection especially used Deep Learning. This research used CNN (Convolutional Neural Network) as deep learning method to detect mangosteen rind surface. Our research is to find configuration which was the best accurancy value. The rind detection calcuted between epoch and layer to obtain maximum accurancy value. This method achieved maximum value by parameter 4 layer and epoch value of 30. From our experiment, the test result for rind detection was 98% accurancy.
Keywords
Full Text:
PDFReferences
Balai Besar Penelitian dan Pengembangan
Pascapanen Pertanian. (2010). Laporan
Kinerja 2010. Bogor: Badan Penelitian
dan Pengembangan Pertanian.
Gonzalez, R. C., & Woods, R. E. (2002).
Digital Image Processing. New Jersey:
Pearson Education.
Hermawati, F. A. (2013). Pengolahan Citra
Digital: Konsep dan Teori. Yogyakarta:
Andi.
Khoje, S. A., Bodhe, S. K., & Adsul, A. (2013).
Automated Skin Defect Identification
System for Fruit Grading Based on
Discrete Curvelet Transform.
International Journal of Engineering
and Technology (IJET), 5(4), 3251-
Krizhevsky, A., Sutskever, I., & Hinton, G. E.
(2012). Imagenet Classification With
Deep Convolutional Neural Networks. In
Advances in neural information
processing systems (pp. 1097-1105).
LeCun, Y., Bengio, Y., & Hinton, G. (2015).
Deep Learning. Nature, 521 (7533), 436-
Mathworks. (2017). Convolutional Neural
Network. Diambil kembali dari
Mathworks:
https://www.mathworks.com/discovery/c
onvolutional-neural-network.html
Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee,
H., & Ng, A. Y. (2011). Multimodal
deep learning. In Proceedings of the
th international conference on
machine learning (ICML-11) (pp. 689-
Putra, W. S. E. (2016). Klasifikasi
Citra Menggunakan Convolutional
Neural Network (CNN) pada Caltech
Jurnal Teknik ITS, 5(1).
Ranjit, K. N., Chethan, H. K., & Naveena, C.
(2016). Identification and Classification
of Fruit Diseases. International Journal
of Engineering Research and Application
(IJERA), pp.11 – 14).
Sianipar, R. (2013). Pemograman MATLAB
dalam Contoh dan Terapan. Bandung:
Penerbit Informatika.
Sindonews. (2014). Tiga jenis buah-buahan ini
jadi andalan ekspor Indonesia. Diambil
kembali dari
Sindonews:https://ekbis.sindonews.com/r
ead/853574 /34/tiga-jenis-buah-buahanini-
jadi-andalan-ekspor-indonesia-
Springenberg, J. T., Dosovitskiy, A., Brox, T.,
& Riedmiller, M. (2014). Striving for
Simplicity: The All Convolutional Net.
ICLR-2015.
Socher, R., Huval, B., Bath, B., Manning, C.
D., & Ng, A. Y. (2012). Convolutional-
Recursive Deep Learning for 3D Object
Classification. In Advances in Neural
Information Processing Systems (pp.
-664).
Zufar, M., & Setiyono, B. (2016).
Convolutional Neural Networks untuk
Pengenalan Wajah Secara Real-Time.
Jurnal Sains dan Seni ITS, 5(2).
DOI: https://doi.org/10.18196/st.212229
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Semesta Teknika
Editorial Office :
SEMESTA TEKNIKA
Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.
Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia
Telp:(62)274-387656, Fax.:(62)274-387656
Email: semesta_teknika@umy.ac.id, semestateknika@umy.university
Website: http://http://journal.umy.ac.id/index.php/st
Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.