Klasifikasi Cacat Lintasan Dalam Bantalan Bola Berbasis Support Vector Machine (SVM) pada Fan Industri

Berli Paripurna Kamiel, Arie Joko Wiranto, Bambang Riyanta, Sulis Yulianto

Abstract


Fan adalah sebuah mesin industri yang berfungsi  mensirkulasikan udara di dalam sebuah ruangan. Salah satu komponen dari fan yang sering rusak adalah bantalan. Metode spektrum merupakan salah satu metode deteksi rusak/cacat bantalan berbasis getaran yang umum digunakan namun grafik spektrum sering sulit dipahami oleh operator di lapangan. Metode pengenalan pola (pattern recognition) adalah metode yang mudah digunakan karena tidak perlu menterjemahkan grafik spektrum. Metode pengenalan pola yang digunakan pada penelitian ini adalah Support Vector Machine (SVM). Tujuan penelitian ini adalah mendeteksi cacat lintasan dalam pada bantalan bola. Penelitian ini menggunakan dua kondisi bantalan yang berbeda yaitu bantalan normal, dan bantalan cacat. Cacat pada bantalan dibuat dengan metode Electrical Discharge Machine (EDM) pada lintasan dalam dengan kedalaman 1,4 mm dan lebar 0,4 mm. Sinyal getaran bantalan direkam dari rig uji fan industri menggunakan software MATLAB dengan merekam data sebanyak 700 file untuk setiap kondisi. Data tersebut diektraksi kedalam 17 parameter statistik yang kemudian diseleksi secara visual sebagai input SVM. Klasifikasi SVM dilakukan dengan variasi kernel Radial Basis Function (RBF), Polynomial dan Linear. Hasil penelitian menunjukkan parameter statistik entropy dengan standart error menggunakan variasi kernel Radial Basis Function (RBF), Polynomial dan Linear adalah rekomendasi untuk klasifikasi cacat pada bantalan lintasan dalam karena menghasilkan akurasi sebesar 100%.

 

Industrial fan is one of -rotating machinery commonly used by industries to circulate air in a particular area. One of the most important component of a fan is the bearing which may fault during its operation Spectrum analysis  is one of vibration-based methods frequently used to detect faulty bearing  but this method has a disadvantage that is not easily understood by operators in the field. Pattern recognition method  is an easy method to be used because it does not need to interpret the spectrum. The pattern recognition method used in this study is Support Vector Machine (SVM). The purpose of this study is to detect inner race fault of a ball bearing using SVM. This study uses two different bearings, namely a normal bearing and a faulty bearing. Fault on the bearing were made by Electrical Discharge Machine (EDM) on the inner race with a width of 0.4 mm  and a depth of 1.4 mm. The test is carried out on an industrial fan test rig and recorded using MATLAB. The vibration signal is recorded to result of 700 files for each bearing condition. The vibration data is subsequently extracted into 17 statistical parameters which are then visually selected as input of SVM classifier. The SVM classifiear is trained using variations of the Radial Basis Function (RBF), Polynomial and Linear kernels. The results shows that the statistical parameters of entropy-standard error using variation of the RBF, Polynomial and Linear kernels gives the highest accuracy of 100%.


Keywords


kernel function, pattern recognition, spectrum, statistical parameters

Full Text:

PDF

References


Adi, F., & Suwarmin. (2017). Identifikasi Keausan Bantalan Tirus (Tapered Bearing) Berbasis Analisis Vibrasi dengan Metode Support Vector Machine. Jurnal Teknik ITS, 768-771.

Amandi, D. N. (2015). Diagnosis Kerusakan pada Bantalan Gelinding dengan Metode Support Vector Machine. AGRI-TEK, 62-73.

Fathurrohman, M. (2017). Diagnosa Kerusakan Bantalan Bola Menggunakan Metode Support Vector Machine. Jurnal Mekanika, 14-21.

Kamiel, B. P., & Ramadhan, R. S. (2017). Pengaruh Kecepatan Operasi Pompa Sentrifugal Terhadap Sensitifitas Metode Deteksi Fenomena Kavitasi Berbasis Parameter Statistik Domain Waktu. Semesta Teknika, XX(1),51-66.

Kamiel, B. P., Mulyani, & Sunardi. (2017). Deteksi Cacat Bantalan Bola Pada Pompa Sentrifugal Menggunakan Spektrum Getaran. Semesta Teknika, Vol. 20, No.2, 204-215.

Latuny, J. (2013). A Sensitivity Comparison of Neuro-fuzzy Feature Extraction Methods from Bearing Failure Signals. 253-256.

Rapur, J. S. (2016). Experimental Time-domain Vibration Based Fault Diagnosis of Centrifugal Pumps using SVM. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering.

Scheffer, C., & Girdhar, P. (2004). Practical Machinary Vibration Analysis and Predictive Maintenance. Burlington: Elsevier Ltd.

Setyawan, H. P., & Suryadi, D. (2018). Analisis Karakteristik Vibrasi pada Paper Dryer Machine untuk Deteksi Dini Kerusakan Spherical Roller Bearing. ROTASI, 110-117.

Suhardjono. (2005). Analisis Sinyal Getaran Untuk Menentukan Jenis dan Tingkat Kerusakan Bantalan Bola (Ball Bearing). Jurnal Teknik Mesin, Vol. 7, No. 1.

Sukendi,Ikhwansyah, I., & Suherman. (2015). Analisa Karakteristik Getaran dan Machine Learning Untuk Deteksi Dini Kerusakan Bearing. Jurnal Penelitian Widya Teknika, Vol-23 No.23 Hal 41-49.

Susilo, D. D. (2008). Deteksi Kerusakan Bantalan Gelinding Pada Pompa Sentrifugal Dengan Analisis Sinyal Getaran. Jurnal Mekanika, Vol. 7 No. 1.

Tiwari, A., & Jatola, R. (2013). Fault Detection in Bearing Using Envelope Analysis. Indian Journal of Research, Vol. 3. No. 5.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York: Springer Verlag.




DOI: https://doi.org/10.18196/st.222246

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Berli Paripurna Kamiel, Arie Joko Wiranto, Bambang Riyanta, Sulis Yulianto

Editorial Office :

SEMESTA TEKNIKA

Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.

Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia

Telp:(62)274-387656, Fax.:(62)274-387656

Email: semesta_teknika@umy.ac.id, semestateknika@umy.university

Website: http://http://journal.umy.ac.id/index.php/st

Creative Commons License

Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.