Pengaruh Kecepatan Putar Tool dan Sudut Shoulder Sambungan Friction Stir Spot Welding pada Bahan Polypropylene

Aris Widyo Nugroho, Muhammad Rifai Dwi Saputra, Cahyo Budiyantoro

Abstract


Penyambungan bahan thermoplastic polypropilen dengan teknik Friction stir spot welding (FSSW) telah banyak dilakukan. Walaupun kekuatannya sudah mencukupi, masih dihasilkan keyhole dan bekas shoulder yang cukup besar karena penggunaan ukuran soulder dan pin besar. Penelitian ini menginvestigasi sambungan polypropilen dengan teknik FSSW menggunakan shoulder dan pin lebih kecil pada geometri shoulder yang berbeda. Penelitian di awali dengan pemotongan lembaran polypropylene dengan panjang 150mm, lebar 30mm dan tebal 5mm. Sambungan tumpang sesuai dengan standar EN 12814-2 digunakan dalam penyambungan ini. Proses penyambungan dilakukan pada kecepatan putar 985, 1660, 2350 rpm dengan dua jenis tool (shoulder angle 0o dan 5o). Sambungan diamati struktur makro, kekerasan dan kapastas beban tariknya. Hasil penelitian menunjukan bahwa semua sambungan memiliki kegagalan getas. Seiring bertambahnya sudut shoulder dan kecepatan putar tool, ukuran nugget dan welding zone meningkat, sehingga meningkatkan kapasitas beban tari mencapai 2116 N. Geometri tool 2 berpotensi untuk dapat diaplikasikan dalam sambungan FSSW.

 

The joining of thermoplastic polypropylene material using the Friction stir spot welding (FSSW) technique has been developed. Although the strength is sufficient, it still produces a large keyhole and shoulder marks due to the use of a large shoulder and pin size. This research investigates polypropylene joint with the FSSW technique using smaller shoulders and pins on different shoulder geometries. The research began by cutting of polypropylene sheets into 150 mm long and 30 mm wide and 5 mm thick. Specimens according to EN 12814-2 were used in this welding joint. The welding process is carried out at rotational speeds of 985, 1660, 2350 rpm with two types of tools (shoulder angle of 0o and 5o). The welding joint was then observed for macrostructure, hardness, and tensile load-bearing capacity. The results showed that all welding joints had a brittle failure. The increasing of the shoulder angle and the rotational speed increase the nugget size and welding zone thickness resulting in a higher tensile load-bearing capacity which reaches up to 2116 N. The tool with the geometric being used has the potential to be applied in the FSSW joint.


Keywords


FSSW, shoulder angle, polypropylene, tensile load bearing capacity

Full Text:

PDF

References


Aota, K. & Ikeuchi, K. (2009). Development of friction stir spot welding using rotating tool without probe and its application to low-carbon steel plates. Welding International, 23(8), 572-580.

Aslanlar, S., Ogur, A., Ozsarac, U. & Ilhan, E. (2008). Welding time effect on mechanical properties of automotive sheets in electrical resistance spot welding. Materials & Design, 29(7), 1427-1431.

Badarinarayan, H., Yang, Q. & Zhu, S. (2009). Effect of tool geometry on static strength of friction stir spot-welded aluminum alloy. International Journal of Machine Tools and Manufacture, 49(2), 142-148.

Bilici, M. K. (2012). Effect of tool geometry on friction stir spot welding of polypropylene sheets. Express Polymer Letters, 6(10), 805–813.

Bilici, M. K. & Yukler, A. I. (2012). Effects of welding parameters on friction stir spot welding of high density polyethylene sheets. Materials & Design, 33, 545-550.

Bilici, M. K. & Yükler, A. I. (2012). Influence of tool geometry and process parameters on macrostructure and static strength in friction stir spot welded polyethylene sheets. Materials & Design, 33, 145-152.

Bilici, M. K., Yükler, A. I. & Kurtulmuş, M. 2016. Pin Profile and Shoulder Geometry Effects in Friction Stir Spot Welded Polymer Sheets. The International Journal Of Engineering And Science (IJES), 5(6), 29-36.

Bilici, M. K., Yükler, A. Ý. & Kastan, A. (2014). Effect of the tool geometry and welding parameters on the macrostructure, fracture mode and weld strength of friction-stir spot-welded polypropylene sheets. Materiali in tehnologije, 48, 705-711.

Blawert, C., Hort, N. & Kainer, K. U. (2004). Automotive applications of magnesium and its alloys. Trans. Indian Inst. Met, 57(4), 397-408.

Buffa, G., Fratini, L. & Piacentini, M. (2008). On the influence of tool path in friction stir spot welding of aluminum alloys. Journal of materials processing technology, 208(1-3), 309-317.

Chowdhury, S. M., Chen, D. L., Bhole, S. D. & Cao, X. (2010). Effect of pin tool thread orientation on fatigue strength of friction stir welded AZ31B-H24 Mg butt joints. Procedia Engineering, 2(1), 825-833.

Cole, G. S. & Sherman, A. M. (1995). Light weight materials for automotive applications. Materials characterization, 35(1), 3-9.

Dashatan, S. H., Azdast, T., Ahmadi, S. R. & Bagheri, A. (2013). Friction stir spot welding of dissimilar polymethyl methacrylate and acrylonitrile butadiene styrene sheets. Materials & Design, 45, 135-141.

Davies, G. (2003). Future trends in automotive body materials. Mater Automob Bodies, 8, 252-269.

Feng, Z., Santella, M. L., David, S. A., Steel, R. J., Packer, S. M., Pan, T., Kuo, M. & Bhatnagar, R. S. (2005). Friction Stir Spot Welding of Advanced High-Strength Steels – A Feasibility Study. SAE Transactions, 114(5), 592-598.

Goodarzi, M., Marashi, S. P. H. & Pouranvari, M. (2009). Dependence of overload performance on weld attributes for resistance spot welded galvanized low carbon steel. Journal of Materials Processing Technology, 209(9), 4379-4384.

Hirasawa, S., Badarinarayan, H., Okamoto, K., Tomimura, T. & Kawanami, T. (2010). Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method. Journal of Materials Processing Technology, 210(11), 1455-1463.

Khan, M. I., Kuntz, M. L., Su, P., Gerlich, A., North, T. & Zhou, Y. (2007). Resistance and friction stir spot welding of DP600: a comparative study. Science and Technology of Welding and Joining, 12(2), 175-182.

Kulekci, M. K., Şik, A. & Kaluç, E. (2008). Effects of tool rotation and pin diameter on fatigue properties of friction stir welded lap joints. The International Journal of Advanced Manufacturing Technology, 36(9-10), 877-882.

Kurtulmus, M. (2012). Friction stir spot welding parameters for polypropylene sheets. Scientific Research and Essays, 7(8), 947-956.

Matsuyama, K. (2007). Trend of automobile vehicles and the joining technologies. Welding in the World, 51(3-4), 50-60.

Merzoug, M., Mazari, M., Berrahal, L. & Imad, A. (2010). Parametric studies of the process of friction spot stir welding of aluminium 6060-T5 alloys. Materials & Design, 31(6), 3023-3028.

Prasad, R. V., & Raghava, P. M. (2012). FSW of Polypropylene Reinforced With Al2O3 Nano Composites, Effect on Mechanical and Microstructural Properties. International Journal of Engineering Research and Applications, 2(6), 288-296.

Su, P., Gerlich, A., Yamamoto, M. & North, T. H. (2007). Formation and retention of local melted films in AZ91 friction stir spot welds. Journal of materials science, 42(24), 9954-9965.

Tozaki, Y., Uematsu, Y. & Tokaji, K. (2007). Effect of tool geometry on microstructure and static strength in friction stir spot welded aluminium alloys. International Journal of Machine Tools and Manufacture, 47(15), 2230-2236.

Vijay, S. J. & Murugan, N. (2010). Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded Al–10 wt.% TiB2 metal matrix composite. Materials & Design, 31(7), 3585-3589.

Yan, Y., Shen, Y., Zhang, W. & Guan, W. (2017). Effects of friction stir spot welding parameters on morphology and mechanical property of modified cast nylon 6 joints produced by double-pin tool. The International Journal of Advanced Manufacturing Technology, 92(5-8), 2511-2523.

Yang, Q., Mironov, S., Sato, Y. S. & Okamoto, K. (2010). Material flow during friction stir spot welding. Materials Science and Engineering: A, 527(16-17), 4389-4398.




DOI: https://doi.org/10.18196/st.222250

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Aris Widyo Nugroho, Muhammad Rifai Dwi Saputra, Cahyo Budiyantoro

Editorial Office :

SEMESTA TEKNIKA

Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.

Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia

Telp:(62)274-387656, Fax.:(62)274-387656

Email: semesta_teknika@umy.ac.id, semestateknika@umy.university

Website: http://http://journal.umy.ac.id/index.php/st

Creative Commons License

Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.