Comparison of Islamic and Conventional Banking Financial Performance during the Covid-19 Period

Ulumuddin Nurul Fakhri, Angga Darmawan

Abstract


The COVID-19 pandemic that is spreading in Indonesia has affected economic growth, likewise banks sector. This study aims to determine the financial performance factors that are affected by the COVID-19 pandemic, both in Islamic and conventional banking which are included in the CBGB 2 category so that banks in Indonesia can anticipate it. This study uses the Artificial Neural Network (ANN) method with 6 financial performance variables in the period of January 2020 - September 2020, namely Capital Adequacy Ratio (%), Operating Expenses / Operating Income (%), Net Operation Margin (%), Landing on Deposits. Ratio (%), Short Term Mismatch (%) which are used as the independent variable, as well as Return on Assets which is used as the dependent variable. The results showed that the COVID-19 pandemic affected financial performance factors in the form of a Funding to Deposit Ratio of 35.21%; Short Term Mismatch of 26.92% and Net Operation Margin of 26.92% in Islamic banking. Whereas in conventional banking, Operating Expenses to Operating Income was 72.87% and the Capital Adequacy Ratio was 17.31%. This result is also in line with previous research where Islamic banking is more vulnerable than conventional banking in facing financial crises.


Keywords


Covid-19; Artificial Neural Network; banking financial performance

Full Text:

PDF

References


Ali, A. M. (2020). The impact of economic blockade on the performance of Qatari Islamic and conventional banks: a period-and-group-wise comparison. ISRA International Journal of Islamic Finance, 12(3), 419-441

Al-Osaimy, M.H, (1998), Neural network system for predicting islamic bank performance, JKAU: Econ. & Adm., 11, 33-46.

Al-Shayea, Q. K., & El-Refae, G. A. (2012). Evaluation of banks’ insolvency using artificial neural networks. In Proceedings of the 11th WSEAS international conference on Artificial Intelligence, Knowledge Engineering and Data Bases (AIKED'12), Cambridge, United Kingdom (pp. 22-24).

Almilia, L. S., & Kristijadi, K. (2003). Analisis rasio keuangan untuk memprediksi kondisi financial distress perusahaan manufaktur yang terdaftar di bursa efek jakarta. Jurnal Akuntansi dan Auditing Indonesia. Universitas Islam Indonesia, 7(2).

Anwar, S., & Watanabe, K. (2011). Performance comparison of multiple linear regression and artificial neural networks in predicting depositor return of Islamic Bank. In 2010 International Conference on E-business, Management and Economics (IPEDR), 3.

Bank Indonesia. (2020). Laporan Nusantara. Retrieved from https://www.bi.go.id/id/publikasi/laporan/Pages/Laporan-Nusantara-Agustus-2020.aspx#.

Boyacioglu, M. A., Kara, Y., & Baykan, Ö. K. (2009). Predicting bank financial failures using neural networks, support vector machines, and multivariate statistical methods: A comparative analysis in the sample of savings deposit insurance fund (SDIF) transferred banks in Turkey. 36(2), 3355-3366.

Badan Pusat Statistik. (2020). Economic Growth of Indonesia. Retrieved from https://www.bps.go.id/website/materi_ind/materiBrsInd-20200805114633.pdf.

Brédart, X. (2014). Bankruptcy prediction model using neural networks. Accounting and Finance Research, 3(2), 124-128.

Fakhri, U. N., Anwar, S., Ismal, R., & Ascarya, A. (2019). Comparison and Predicting Financial Performance of Islamic and Conventional Banks in Indonesia to Achieve Growth Sustainability. al-Uqud: Journal of Islamic Economics, 3(2), 174-187.

Fakhri, U. N., Anwar, S., & Ismal, R. (2020). Comparison of Islamic and Conventional Banking Bankruptcy Rates in Indonesia. Tazkia Islamic Finance and Business Review, 13(2).

Hamdi, M. (2012: 374-382), Prediction of financial distress for Tunisian firms: a comparative study between financial analysis and neuronal analysis. Business Intelligence Journal, 5(2).

Ika, S. R., & Abdullah, N. (2011). A comparative study of financial performance of Islamic banks and conventional banks in Indonesia. International Journal of Business and Social Science, 2(15).

Ismal, R. (2010). Strengthening and improving the liquidity management in Islamic banking. Humanomics, 26(1), pp. 18-35.

Khrawish, H. A. (2011). Determinants of commercial banks performance: evidence from Jordan. International Research Journal of Finance and Economics, 81, 148-159.

Mawardi, W. (2005). Analisis faktor faktor yang mempengaruhi kinerja keuangan bank umum di Indonesia (studi kasus pada bank umum dengan total asset kurang dari 1 trilyun). Jurnal Bisnis Strategi, 14(1), 85.

Muljono, T. P. (1999). Aplikasi Akuntansi Manajemen Dalam Praktik Perbankan, Edisi 3, BPFE Yogyakarta.

Nugroho, L., Utami, W., & Doktoralina, C. M. (2020). COVID-19 and the Potency of Disruption on the Islamic Banking Performance (Indonesia Cases). International Journal Economic And Business Applied, 1(1), 11-25.

Odom, Marcus D., & Sharda, R. (1990). A neural network model for bankruptcy prediction. Neural Networks, 1990, 1990 IJCNN International Joint Conference on. IEEE.

Peraturan Otoritas Jasa Keuangan. (2016). Transparansi dan Publikasi Laporan Bank. Retrieved from https://www.ojk.go.id/id/kanal/perbankan/regulasi/peraturan-ojk/Documents/Pages/POJK-tentang-Perubahan-Regulasi-Transparansi-dan-Publikasi-Laporan-Bank/POJK-Publikasi-Transparansi.pdf.

Setiawan, W. (2008). Prediksi harga saham menggunakan jaringan syaraf tiruan multilayer feedforward network dengan algoritma backpropagation. Konferensi Nasional Sistem dan Informatika 2008 (KNSdanI08-020), 6.

Surat Edaran Otoritas Jasa Keuangan. (2019). Tingkat kesehatan perusahaan pembiayaan dan perusahaan pembiayaan syariah. Retrieved from https://ojk.go.id/id/regulasi/otoritas-jasa-keuangan/rancangan-regulasi/Documents/RSEOJK%20TKS%20PP_Lampiran%203.pdf.

Susanto, Y. K., dan Njit, T. F. (2012). Penentu kesehatan perbankan. Jurnal Bisnis dan Akuntansi, 14(2), 105-116.

Otoritas Jasa Keuangan. (2020). Statistik Perbankan Indonesia. Retrieved from https://www.ojk.go.id/id/kanal/perbankan/data-dan-statistik/statistik-perbankan-indonesia/Pages/Statistik-Perbankan-Indonesia---Desember-2020.aspx.

Tam, K .Y, (1991), Neural network models and the prediction of bank bankruptcy, Science Direct Journal, Volume 19, Issue 5, Pages 429-445

Tam, K. Y. dan Kiang, M.Y, (1992), Managerial applications of neural networks: The case of bank failure predictions, Management Science in inform publication, 38, 926-947.

Tho’in, M., (2019). The comparison of Islamic banking financial performance in Indonesia. International Journal of Scientific Research and Education, 7(5).




DOI: https://doi.org/10.18196/ijief.v4i0.10080

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 International Journal of Islamic Economics and Finance (IJIEF)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


International Journal of Islamic Economics and Finance (IJIEF)
International Program for Islamic Economics and Finance 
Department of Economics  
Faculty of Economics and Business
Universitas Muhammadiyah Yogyakarta

Office:
Pascasarjana Building, Ground Floor
Jl. Brawijaya (Ringroad Selatan), Kasihan, Bantul
D.I. Yogyakarta 55183, INDONESIA
Official email: ijief@umy.ac.id