Studi Termodinamika Pembakaran Kombinasi Batu Bara dan Biomassa Limbah
Abstract
Pembakaran bersama batubara dan biomassa di pembangkit listrik tenaga batubara yang ada sedang dipertimbangkan sebagai alternatif yang layak untuk transisi pemanfaatan energi yang tidak terbarukan ke terbarukan. Dalam hal ini, berbagai penelitian telah dilakukan dalam dua puluh tahun terakhir, yang sebagian besar kesimpulan umum adalah bahwa efisiensi boiler menurun sehubungan dengan peningkatan persentase biomassa dalam co-firing, namun studi tambahan dianggap diperlukan, terutama untuk limbah biomassa yang melimpah di Indonesia. Biomassa limbah yang akan digunakan dalam penelitian ini adalah tandan kosong kelapa sawit (TKKS), sekam padi, dan wood pellet yang dihasilkan dari serbuk gergaji. Karakteristik termodinamika pembakaran co-firing yang akan digunakan dalam penelitian ini adalah air-to-fuel ratio (AFR), emisi CO2 pembakaran, dan temperatur nyala adiabatik. Sebuah open source Cool Prop formulasi sifat termodinamika diimplementasikan untuk mengevaluasi sifat termodinamika bahan yang sesuai yang terlibat dalam penelitian ini. Hasil penelitian menunjukkan bahwa AFR menurun dengan bertambahnya komposisi biomassa dalam bahan bakar, dimana laju perubahan masing-masing AFR per persen biomassa adalah -0,018, -0,0406, dan -0,026 untuk campuran batubara-TKKS, batubara-sekam padi, dan batubara-kayu. Adapun karakteristik AFR, emisi karbon dioksida menurun dengan meningkatnya persen massa biomassa dalam komposisi bahan bakar. Laju perubahan CO2 sehubungan dengan persen biomassa dalam komposisi bahan bakar adalah masing-masing -6.3x10-3, -1.12x10-2, dan -6.48x10-3 untuk campuran batubara-TKKS, batubara-sekam padi, dan batubara-kayu. Suhu nyala adiabatik juga menurun sehubungan dengan peningkatan persentase massa biomassa dalam komposisi bahan bakar. Laju perubahan suhu nyala adiabatik dalam K/%biomassa berturut-turut adalah -13,93, -10,70, dan -12,81 untuk campuran TKKS batubara, sekam padi, dan kayu batubara.
Co-firing of coal and biomass in an existing coal fired power plant is being considered as a viable alternative to transition from non-renewable-to-renewable energy utilization. In this regard, various researches have been conducted in the last twenty years, in most of which the general conclusion is that the boiler efficiency decreases with respect to increasing biomass percentage in co-firing, nonetheless, additional study is deemed to be required, especially for waste biomass which are abundantly available in Indonesia. The waste biomass to be employed in this study are palm empty fruit bunch (EFB), rice husk, and wood pellet produced from sawdust. Co-firing combustion thermodynamic characteristics which are to be deployed in this study are air-to-fuel ratio (AFR), combustion CO2 emission, and adiabatic flame temperature. An open source CoolProp of thermodynamics properties formulations were implemented in order to evaluate thermodynamic properties of corresponding materials involved in this study. The results of the study show that AFR decreases with increasing biomass composition in the fuel, where the AFR rate of change per percent of biomassa are -0.018, -0.0406, and -0.026 for blend of coal-EFB, coal-rice husk, and coal-wood, respectively. As to the AFR characteristic, the emission of carbon dioxide is decreasing with increasing percent mass of biomass in the fuel composition. The CO2 rate of change with respect to percent biomass in fuel composition are -6.3x10-3, -1.12x10-2, and -6.48x10-3 for the blend of coal-EFB, coal-rice husk, and coal-wood, respectively. The adiabatic flame temperature is also decreasing with respect to increasing biomass mass percentage in fuel composition. The adiabatic flame temperature rate of change in K/%biomass are -13.93, -10.70, and -12.81 for the blend of coal-EFB, coal-rice husk, and coal-wood, respectively.
Keywords
Full Text:
PDFReferences
D. S. Primadita, I. N. S. Kumara, and W. G. Ariastina, “A review on biomass for electricity generation in Indonesia,” J. Electr. Electron. Informatics, vol. 4, no. 1, p. 4, 2020.
M. Aziz, D. Budianto, and T. Oda, “Computational fluid dynamic analysis of co-firing of palm kernel shell and coal,” Energies, vol. 9, no. 3, p. 137, 2016.
S. Belosevic, “Modeling approaches to predict biomass co-firing with pulverized coal,” Open Thermodyn. J., vol. 4, no. 1, 2010.
S. Mehmood, B. V Reddy, and M. A. Rosen, “Energy analysis of a biomass co-firing based pulverized coal power generation system,” Sustainability, vol. 4, no. 4, pp. 462–490, 2012.
A. Kazagic, N. Hodzic, and S. Metovic, “Co-combustion of low-rank coal with woody biomass and miscanthus: an experimental study,” Energies, vol. 11, no. 3, p. 601, 2018.
S. A. Channiwala and P. P. Parikh, “A unified correlation for estimating HHV of solid, liquid and gaseous fuels,” Fuel, vol. 81, no. 8, pp. 1051–1063, 2002.
K. W. Ragland and K. M. Bryden, Combustion engineering. CRC press Boca Raton, FL, 2011.
T.-Y. Mun, T. Z. Tumsa, U. Lee, and W. Yang, “Performance evaluation of co-firing various kinds of biomass with low rank coals in a 500 MWe coal-fired power plant,” Energy, vol. 115, pp. 954–962, 2016.
P. Ninduangdee and V. I. Kuprianov, “A study on combustion of oil palm empty fruit bunch in a fluidized bed using alternative bed materials: Performance, emissions, and time-domain changes in the bed condition,” Appl. Energy, vol. 176, pp. 34–48, 2016.
M. Anshar, F. N. Ani, and A. S. Kader, “Combustion Characteristics Modeling of Rice Husk as Fuel for Power Plant in Indonesia,” in Applied Mechanics and Materials, 2015, vol. 695, pp. 815–819.
DOI: https://doi.org/10.18196/jmpm.v5i2.13903
Refbacks
- There are currently no refbacks.
Editorial Office :
JMPM (Jurnal Material dan Proses Manufaktur)
Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.
Jl. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia
Email: jmpm@umy.ac.id
Telp/Fax: (62)274-387656
Whatsapp: 085642095827