Kontribusi Lapisan Hidroksiapatit pada Purwarupa Implan Titanium terhadap Nilai Osseointegrasi Melalui Removal Torque Test
Abstract
Biomaterial titanium mulai banyak digunakan sebagai bahan implan karena mempunyai kekuatan tinggi, lentur, tahan korosi dan biokompatibilitas yang baik. Namun demikian, titanium bersifat bioinert yang membuatnya tidak bisa berinteraksi dan menyatu dengan jaringan hidup. Untuk menutup kelemahan ini, titanium perlu dilapisi dengan bahan yang mempunyai bioaktivitas tinggi seperti biokeramik hidroksiapatit (HA). Pada studi ini, pelapisan HA telah dilakukan pada purwarupa implan berbentuk sekrup yang terbuat dari paduan titanium tipe β yang relatif baru dikembangkan, yakni Ti-29Nb-13Ta-4.6Zr (TNTZ). Proses pelapisan dilakukan dengan menggunakan metode Electrophoretic Deposition (EPD). Lapisan HA pada permukaan TNTZ meningkatkan bioaktivitas implan logam ini sehingga memicu proses penyatuan implan dengan jaringan hidup (osseointegration). Parameter yang digunakan untuk menentukan nilai osseointegrasi ini adalah besarnya gaya puntiran (torsi) yang dibutuhkan untuk melepaskan sekrup dari tulang dengan menggunakan alat removal torque tester (RTT). Untuk itu, sekrup TNTZ berukuran M3x0.5 yang tidak dilapisi HA (tanpa HA) dan yang sudah dilapisi HA (lapis HA) ditanamkan pada paha atas (tibia) hewan uji mencit Rattus norvegicus Wistar kemudian dipelihara selama 2 (dua) minggu. Setelah itu, hewan uji dimatikan, dan besaran torsi untuk melepaskan masing-masing sekrup dari tibia mencit diukur dengan alat RTT tersebut, dan dilanjutkan dengan analisis histopatologi pada jaringan bekas pemasangan implan. Hasil studi menunjukkan bahwa implan TNTZ dengan lapis HA memiliki nilai osseointegrasi yang jauh lebih tinggi (470%) dari implan tanpa HA. Analisis histopatologi menunjukkan bahwa proses pembentukan jaringan baru (osteogenesis) yang jauh lebih banyak pada jaringan tulang yang dipasangi implan TNTZ lapis HA dibandingkan dengan tanpa HA. Disamping itu, adanya lapisan HA pada permukaan implan juga mampu mengurangi reaksi inflamasi yang berlebihan pada jaringan tulang hewan uji dalam waktu yang relatif singkat.
Titanium biomaterials are starting to be widely used as implant materials because they have high strength, flexibility, corrosion resistance and good biocompatibility. However, titanium is bioinert which makes it unable to interact and blend with living tissue. To cover this weakness, titanium needs to be coated with a material that has high bioactivity such as hydroxyapatite (HA) bioceramic. In this study, HA coating was carried out on a screw-shaped implant prototype made of a relatively recently developed -type titanium alloy, namely Ti-29Nb-13Ta-4.6Zr (TNTZ). The coating process is carried out using the Electrophoretic Deposition (EPD) method. The HA layer on the TNTZ surface increases the bioactivity of these metallic implants thereby triggering the process of implant integration with living tissue (osseointegration). The parameter used to determine the osseointegration value is the amount of torsion required to remove the screw from the bone using a removal torque tester (RTT). For this reason, TNTZ screws measuring M3x0.5 which were not coated with HA (without HA) and which had been coated with HA (HA coated) were implanted in the upper thigh (tibia) of Rattus norvegicus Wistar mice and then reared for 2 (two) weeks. After that, the test animals were turned off, and the magnitude of the torque to remove each screw from the tibia of mice was measured with the RTT device, and continued with histopathological analysis of the implanted tissue. The results of the study showed that TNTZ implants with HA coating had a much higher osseointegration value (470%) than implants without HA. Histopathological analysis showed that the process of new tissue formation (osteogenesis) was much more abundant in bone tissue with HA-coated TNTZ implants compared to those without HA. In addition, the presence of an HA layer on the surface of the implant was also able to reduce the excessive inflammatory reaction in the bone tissue of the test animals in a relatively short time.
Keywords
Full Text:
PDFReferences
N. J. Hallab and J. J. Jacobs, Implant Debris : Clinical Data and Relevance. Elsevier Ltd., 2011.
S. Campbell, S. J. Crean, and W. Ahmed, “Titanium allergy: fact or fiction?,” Fac. Dent. J., vol. 5, no. 1, pp. 18–25, 2014, doi: 10.1308/204268514X13859766312593.
D. J. Langton, S. S. Jameson, T. J. Joyce, N. J. Hallab, S. Natu, and A. V. F. Nargol, “Early failure of metal-on-metal bearings in hip resurfacing and large-diameter total hip replacement A
CONSEQUENCE OF EXCESS WEAR,” J Bone Jt. Surg [Br], vol. 92-B, pp. 38–46, 2010, doi: 10.1302/0301-620X.92B1.22770.
M. S. Caicedo, L. Samelko, K. Mcallister, J. J. Jacobs, and N. J. Hallab, “Increasing both CoCrMo-Alloy Particle Size and Surface Irregularity Induces Increased Macrophage Inflammasome Activation In vitro Potentially Through Lysosomal Destabilization Mechanisms,” J. Ortho, pp. 1633–1642, 2013, doi: 10.1002/jor.22411.
A. Dalal, V. Pawar, K. Mcallister, C. Weaver, and N. J. Hallab, “Orthopedic implant cobalt-alloy particles produce greater toxicity and inflammatory cytokines than titanium alloy and zirconium alloy-based particles in vitro , in human osteoblasts , fibroblasts , and macrophages,” J. Biomed. Mater. Res. A, vol. 100A8, no. 8, pp. 2147–2158, 2012, doi: 10.1002/jbm.a.34122.
L. Samelko, M. S. Caicedo, S.-J. Lim, C. Della-Valle, J. Jacobs, and N. J. Hallab, “Cobalt-alloy implant debris induce HIF-1α hypoxia associated responses: a mechanism for metal-specific orthopedic implant failure,” PLoS One, vol. 8, no. 6, p. e67127, 2013.
M. Niinomi, Y. Liu, M. Nakai, H. Liu, and H. Li, “Biomedical titanium alloys with Young ’ s moduli close to that of cortical bone,” Regen. Biomater., pp. 173–185, 2016, doi: 10.1093/rb/rbw016.
A. Remes and D. F. Williams, “Immune response in biocompatibility,” Biomaterials, vol. 13, no. 11, pp. 731–743, 1992, doi: 10.1016/0142-9612(92)90010-L.
S. B. Goodman, “Wear particles, periprosthetic osteolysis and the immune system,” Biomaterials, vol. 28, no. 34, pp. 5044–5048, 2007, doi: 10.1016/j.biomaterials.2007.06.035.
C. A. St. Pierre, M. Chan, Y. Iwakura, D. C. Ayers, E. A. Kurt-Jones, and R. W. Finberg, “Periprosthetic osteolysis: Characterizing the innate immune response to titanium wear-particles,” J. Orthop. Res., vol. 28, no. 11, pp. 1418–1424, 2010, doi: 10.1002/jor.21149.
Gunawarman et al., “Hydroxyapatite Coatings on Titanium Alloy TNTZ using Electrophoretic Deposition,” in IOP Conference Series: Materials Science and Engineering, 2019, pp. 1–11, doi:
1088/1757-899X/602/1/012071.
V. O. Kollath et al., “AC vs . DC Electrophoretic Deposition of Hydroxyapatite on Titanium,” J Eur Ceram Soc, pp. 1–12, 2013.
Y. Kwon, D. H. Yang, and D. Lee, “A Titanium Surface-Modified with Nano-Sized Hydroxyapatite and Simvastatin Enhances Bone Formation and Osseointegration,” J. Biomed. Nanotechnol., vol. 11, pp. 1007–1015, 2015, doi: 10.1166/jbn.2015.2039.
A. Dalal, V. Pawar, K. Mcallister, C. Weaver, and N. J. Hallab, “Orthopedic implant cobalt-alloy particles produce greater toxicity and inflammatory cytokines than titanium alloy and zirconium alloy-based particles in vitro , in human osteoblasts , fibroblasts , and macrophages,” J. Biomed. Mater. Res. A, vol. 100A, no. 8, pp. 2147–2158, 2012, doi: 10.1002/jbm.a.34122.
Z. Feng and Q. Su, “Electrophoretic Deposition of Hydroxyapatite Coating,” J Mater Sci Technol, vol. 19, no. 1, pp. 30–32, 2003.
N. F. Nuswantoro, I. Budiman, A. Septiawarman, H. T. Djong, M. Manjas, and Gunawarman, “Effect of Applied Voltage and Coating Time on Nano Hydroxyapatite Coating on Titanium Alloy Ti6Al4V Using Electrophoretic Deposition for Orthopaedic Implant Application,” in IOP Conference Series: Materials Science and Engineering, 2019, vol. 547, pp. 1–11, doi: 10.1088/1757-899X/547/1/012004.
K. Dudek and T. Goryczka, “Electrophoretic deposition and characterization of thin hydroxyapatite coatings formed on the surface of NiTi shape memory alloy,” Ceram. Int., 2016, doi: 10.1016/j.ceramint.2016.09.074.
A. R. Boccaccini, S. Keim, R. Ma, Y. Li, and I. Zhitomirsky, “Electrophoretic deposition of biomaterials.,” J. R. Soc. Interface, vol. 7, pp. S581–S613, 2010, doi: 10.1098/rsif.2010.0156.focus.
I. Zhitomirsky and L. Gal-Or, “Electrophoretic deposition of hydroxyapatite,” J. Mater. Sci. Mater. Med., vol. 8, pp. 213–219, 1997.
A. E. Tami et al., “Hydroxyapatite particles maintain peri-implant bone mantle during osseointegration in osteoporotic bone,” Bone, vol. 45, no. 6, pp. 1117–1124, 2009, doi: 10.1016/j.bone.2009.07.090.
P. Augat, L. Claes, K. Hanselrnann, G. Suger, and W. Fleischmann, “Increase of Stability in External Fracture Fixation by Hydroxyapatite-Coated Bone Screws,” J. Appl. Mater., vol. 6, pp. 99–104, 1995.
R. S. De Molon, D. Morais-camilo, R. S. Faeda, and M. T. Pepato, “Impact of diabetes mellitus and metabolic control on bone healing around osseointegrated implants : removal torque and histomorphometric analysis in rats,” no. type 1, pp. 1–7, 2012, doi: 10.1111/j.1600-0501.2012.02467.x.
M. Fini et al., “In vitro and in vivo behaviour of Ca- and P-enriched anodized titanium,” Biomaterials, vol. 20, pp. 1587–1594, 1999.
F. Vohra, M. Q. Al-rifaiy, and K. Almas, “ScienceDirect Efficacy of systemic bisphosphonate delivery on osseointegration of implants under osteoporotic conditions : Lessons from animal studies,” Arch. Oral Biol., vol. 59, no. 9, pp. 912–920, 2014, doi: 10.1016/j.archoralbio.2014.05.016.
S. Spriano, S. Yamaguchi, F. Baino, and S. Ferraris, “A critical review of multifunctional titanium surfaces : New frontiers for improving osseointegration and host response , avoiding bacteria contamination,” Acta Biomater., 2018, doi: 10.1016/j.actbio.2018.08.013.
A. M. Ballo, O. Omar, W. Xia, and Palmquist, “Dental Implant Surfaces - Physicochemical Properties, Biological Performance, and Trends,” in Implant Dentistry - A Rapidly Evolving Practice, Prof. Ilser Turkyilmaz (Ed.), 2011, pp. 19–56.
S. Anil, P. S. Anand, H. Alghamdi, and J. A. Jansen, “Dental Implant Surface Enhancement and Osseointegration,” in Implant Dentistry - A Rapidly Evolving Practice, Prof. Ilser Turkyilmaz (Ed.), 2011, pp. 83–108.
A. Jemat, M. J. Ghazali, M. Razali, and Y. Otsuka, “Surface modifications and their effects on titanium dental implants,” Biomed Res. Int., vol. 2015, pp. 1–11, 2015, doi: 10.1155/2015/791725.
K.-M. Pang, J.-K. Lee, Y.-K. Seo, S.-M. Kim, M.-J. Kim, and J.-H. Lee, “Biologic properties of nano-hydroxyapatite : An in vivo study of calvarial defects , ectopic bone formation and bone implantation,” Biomed. Mater. Eng., vol. 25, pp. 25–38, 2015, doi: 10.3233/BME-141244.
T. Masuda, P. K. Yliheikkilä, D. A. Felton, and M. S. L. F. Cooper, “Generalizations Regarding the Process and Phenomenon of Osseointegration. Part I. In Vivo Studies,” Int. J. Oral Maxilloc Implant, vol. 13, pp. 17–29, 1998.
L. Meirelles, F. Currie, M. Jacobsson, T. Albrektsson, and A. Wennerberg, “The Effect of Chemical and Nanotopographical Modifications on the Early Stages of Osseointegration,” Int. J. Oral Maxillofac. Implants, vol. 23, no. 4, pp. 641–647, 2008.
Z. Tao et al., “A comparative study of zinc , magnesium , strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats,” Mater. Sci. Eng. C, vol. 62, pp. 226–232, 2016, doi: 10.1016/j.msec.2016.01.034.
F. Agholme, T. Andersson, P. Tengvall, and P. Aspenberg, “Local bisphosphonate release versus hydroxyapatite coating for stainless steel screw fixation in rat tibiae,” J Mater Sci Mater Med, vol. 23, pp. 743–752, 2012, doi: 10.1007/s10856-011-4539-5.
S. Oh, E. Tobin, Y. Yang, D. L. Carnes, and J. L. Ong, “In Vivo Evaluation of Hydroxyapatite Coatings of Different Crystallinities,” Int. J. Oral Maxillofac. Implants, vol. 20, no. 5, pp. 726–731, 2005.
C. M. Carvalho, L. F. Carvalho, L. J. Costa, M. J. Sá, C. R. Figueiredo, and A. S. Azevedo, “Titanium implants A removal torque study in osteopenic rabbits Carvalho CM, Carvalho LF, Costa LJ, Sá MJ, Figueiredo CR, Azevedo AS - Indian J Dent Res,” Indian J. Dent. Res., vol. 21, no. 3, pp. 349–352, 2010.
S. Hamlet and S. Ivanovski, “Inflammatory cytokine response to titanium chemical composition and nanoscale calcium phosphate surface modification,” Acta Biomater., vol. 7, no. 5, pp. 2345–2353, 2011, doi: 10.1016/j.actbio.2011.01.032.
G. N. Thalji, “Genome Wide assessment of Early Osseointegration in Implant-Adherent Cells,” 2012.
DOI: https://doi.org/10.18196/jmpm.v5i2.13904
Refbacks
- There are currently no refbacks.
Editorial Office :
JMPM (Jurnal Material dan Proses Manufaktur)
Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.
Jl. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia
Email: jmpm@umy.ac.id
Telp/Fax: (62)274-387656
Whatsapp: 085642095827