Pengaruh Torefaksi terhadap Pencucian Potassium dalam Konversi Tandan Kosong Kelapa Sawit menjadi Bahan Bakar Padat Ramah Lingkungan
Abstract
Pada tahun 2018, 37,5 juta ton tandan kosong kelapa sawit (TKKS) diproduksi di Indonesia dan berpotensi untuk digunakan sebagai bahan bakar padat. Namun, ada dua masalah utama dalam penggunaan TKKS sebagai bahan bakar padat, yaitu nilai kalor yang rendah dan kandungan kalium yang tinggi. Oleh karena itu, EFB perlu melalui beberapa proses terlebih dahulu yaitu torrefaction dan washing. Namun, ketika torrefaksi dilakukan terlebih dahulu diperkirakan dapat mempengaruhi kinerja pelindian kalium. Metode studi literatur digunakan dalam penelitian ini untuk mengetahui pengaruh torrefaksi terhadap pelindian kalium TKKS. Penelitian diawali dengan pengumpulan data torrefaction dan leaching dengan perlakuan perendaman dan pengadukan yang dilakukan pada TKKS dari berbagai sumber. Data tersebut kemudian dianalisis dan disimpulkan menjadi 4 zona dekomposisi, yaitu zona rendah (100℃ ≤T<200℃ ), zona sedang (200℃ ≤T≤250℃ ), zona tinggi (250℃ <T≤330), dan zona ekstrem (T>330℃ ). Berdasarkan hasil analisis, TKKS pada zona rendah dan zona sedang dipilih sebagai zona yang sesuai untuk dilakukan torrefaksi pada TKKS karena nilai kalor TKKS dapat mencapai nilai kalor batubara peringkat Lignite A, sedangkan untuk zona sedang telah setara dengan batubara peringkat C sub-bituminus. Berdasarkan nilai kalor yang dapat dicapai dengan mempertimbangkan proses leaching yang tepat untuk diterapkan, torrefaksi pada 200℃ dianggap dapat menghasilkan produk torrefaksi yang optimal untuk TKKS. Kemudian, untuk menurunkan kadar kalium pada zona rendah dan sedang hingga suhu bias 230℃ , perlakuan perendaman terbukti dapat menurunkan kadar kalium rata-rata 52,2%. Untuk mengoptimalkan penurunan kandungan kalium, TKKS perlu direndam pada suhu lingkungan dengan perbandingan air cucian terhadap biomassa 30:1 selama minimal 15 menit.
ABSTRACT
In 2018, 37.5 million tons of palm oil empty fruit bunches (EFB) were produced in Indonesia and have the potential to be used as solid fuel. However, there are two main problems in using EFB as a solid fuel, which are low heating value and high potassium content. Therefore, EFB needs to go through several processes first, namely torrefaction and washing. However, when torrefaction is carried out first is thought to be able to affect the potassium leaching performance. The literature study method was used in this study to investigate the influence of the torrefaction on the potassium leaching of EFB. The research is begun by gathering data of torrefaction and leaching by soaked and stirred treatment, carried out on EFB from various sources. Then, the data is analyzed and concluded into 4 decomposition zones, namely the low zone (100℃≤T<200℃), the moderate zone (200℃≤T≤250℃), the high zone (250℃<T≤330℃), and the extreme zone (T>330℃). Based on the results of the analysis, TKKS in the low zone and the moderate zone are selected as the appropriate zone to do torrefaction on EFB because the heating value of EFB could achieve Lignite A rank coal heating value, while for the medium zone has been equivalent to sub-bituminous C rank coal. Based on the heating value that can be achieved while considering the right leaching process to be applied, torrefaction at 200℃ is considered could produce the optimal torrefaction products for EFB. Then, to reduce the potassium content in low and moderate zones to a refractive temperature of 230℃, the soaked treatment has been proven to reduce potassium content by an average of 52.2%. As for optimizing the reduction in the potassium content, EFB needs to be soaked at environmental temperatures with a ratio of washing water to the biomass of 30:1 for at least 15 minutes.
Keywords
Full Text:
PDFReferences
Direktorat Jenderal Perkebunan, “Statistik Perkebunan Indonesia 2018-2020 Kelapa Sawit,” 2020.
J. C. Ge, H. Y. Kim, S. K. Yoon, and N. J. Choi, “Optimization of palm oil biodiesel blends and engine operating parameters to improve performance and PM morphology in a common rail direct injection diesel engine,” Fuel, vol. 260, no. June 2019, p. 116326, 2020, doi: 10.1016/j.fuel.2019.116326.
E. Hambali and M. Rivai, “The Potential of Palm Oil Waste Biomass in Indonesia in 2020 and 2030,” IOP Conf. Ser. Earth Environ. Sci., vol. 65, no. 1, 2017, doi: 10.1088/1755-1315/65/1/012050.
S. Novianti, A. Nurdiawati, I. N. Zaini, P. Prawisudha, H. Sumida, and K. Yoshikawa, “Low-potassium Fuel Production from Empty Fruit Bunches by Hydrothermal Treatment Processing and Water Leaching,” Energy Procedia, vol. 75, pp. 584–589, 2015, doi: 10.1016/j.egypro.2015.07.460.
S. Nasir, “Estimation of Fuel Higher Heating Value ( HHV ) Using Proximate Analysis Presentation Agenda : Fuels & Combustion Introduction HHV Correlations and Evaluation,” 2013.
S. S. Idris, N. A. Rahman, and K. Ismail, “Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA),” Bioresour. Technol., vol. 123, no. 2012, pp. 581–591, 2012, doi: 10.1016/j.biortech.2012.07.065.
J. Poudel, T. I. Ohm, J. H. Gu, M. C. Shin, and S. C. Oh, “Comparative study of torrefaction of empty fruit bunches and palm kernel shell,” J. Mater. Cycles Waste Manag., vol. 19, no. 2, pp. 917–927, 2017, doi: 10.1007/s10163-016-0492-1.
R. Omar, A. Idris, R. Yunus, K. Khalid, and M. I. Aida Isma, “Characterization of empty fruit bunch for microwave-assisted pyrolysis,” Fuel, 2011, doi: 10.1016/j.fuel.2011.01.023.
W. Suksong et al., “Enhanced solid-state biomethanisation of oil palm empty fruit bunches following fungal pretreatment,” Ind. Crops Prod., vol. 145, no. June 2019, p. 112099, 2020, doi: 10.1016/j.indcrop.2020.112099.
R. P. Singh, M. H. Ibrahim, N. Esa, and M. S. Iliyana, “Composting of waste from palm oil mill: A sustainable waste management practice,” Rev. Environ. Sci. Biotechnol., vol. 9, no. 4, pp. 331–344, 2010, doi: 10.1007/s11157-010-9199-2.
M. Yan, D. Ar Rahim, H. Susanto, R. Dennie Agustin Pohan, and D. Hantoko, “Impact of biomass upgrading via hydrothermal treatment on slagging and fouling during cofiring with coal,” IOP Conf. Ser. Mater. Sci. Eng., vol. 778, no. 1, 2020, doi: 10.1088/1757-899X/778/1/012104.
Y. Sudiyani et al., “Utilization of biomass waste empty fruit bunch fiber of palm oil for bioethanol production using pilot - Scale unit,” Energy Procedia, vol. 32, pp. 31–38, 2013, doi: 10.1016/j.egypro.2013.05.005.
N. Abdullah, F. Sulaiman, and H. Gerhauser, “Characterisation of oil palm empty fruit bunches for fuel application,” J. Phys. Sci., vol. 22, no. 1, pp. 1–24, 2011.
N. Abdullah and F. Sulaiman, “The properties of the washed empty fruit bunches of oil palm,” J. Phys. Sci., vol. 24, no. 2, pp. 117–137, 2013.
M. A. Sukiran, F. Abnisa, W. M. A. Wan Daud, N. Abu Bakar, and S. K. Loh, “A review of torrefaction of oil palm solid wastes for biofuel production,” Energy Convers. Manag., vol. 149, pp. 101–120, 2017, doi: 10.1016/j.enconman.2017.07.011.
K. L. Chin et al., “Optimization of torrefaction conditions for high energy density solid biofuel from oil palm biomass and fast growing species available in Malaysia,” Ind. Crops Prod., vol. 49, pp. 768–774, 2013, doi: 10.1016/j.indcrop.2013.06.007.
K. M. Sabil, M. A. Aziz, B. Lal, and Y. Uemura, “Effects of torrefaction on the physiochemical properties of oil palm empty fruit bunches, mesocarp fiber and kernel shell,” Biomass and Bioenergy, vol. 56, pp. 351–360, 2013, doi: 10.1016/j.biombioe.2013.05.015.
P. Ninduangdee, V. I. Kuprianov, E. Y. Cha, R. Kaewrath, P. Youngyuen, and W. Atthawethworawuth, Thermogravimetric Studies of Oil Palm Empty Fruit Bunch and Palm Kernel Shell: TG/DTG Analysis and Modeling, vol. 79. Elsevier B.V., 2015.
P. Basu, Biomass Gasification and Pyrolysis: Practical Design and Theory, vol. (5)2, no. 2. Oxford: Elsevier, 2010.
J. S. Tumuluru, S. Sokhansanji, J. R. Hess, C. T. Wright, and R. D. Boardman, “A Review on Biomass Torrefaction Process and Product Properties for Energy Applications,” Ind. Biotechnol., vol. 7, no. October, pp. 384–401, 2011, doi: 10.1089/ind.2011.0014.
D. Eseltine, S. S. Thanapal, K. Annamalai, and D. Ranjan, “Torrefaction of woody biomass (Juniper and Mesquite) using inert and non-inert gases,” Fuel, vol. 113, pp. 379–388, 2013, doi: https://doi.org/10.1016/j.fuel.2013.04.085.
W.-H. Chen, Y.-Q. Zhuang, S.-H. Liu, T.-T. Juang, and C.-M. Tsai, “Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres,” Bioresour. Technol., vol. 199, pp.
–374, 2016, doi: https://doi.org/10.1016/j.biortech.2015.08.066.
J. Wannapeera, B. Fungtammasan, and N. Worasuwannarak, “Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass,” J. Anal. Appl. Pyrolysis, vol. 92, no. 1, pp. 99–105, 2011, doi: https://doi.org/10.1016/j.jaap.2011.04.010.
P. Basu, S. Rao, and A. Dhungana, “An investigation into the effect of biomass particle size on its torrefaction,” Can. J. Chem. Eng., vol. 91, no. 3, pp. 466–474, Mar. 2013, doi: https://doi.org/10.1002/cjce.21710.
Y. Uemura, W. Omar, N. A. Othman, S. Yusup, and T. Tsutsui, “Torrefaction of oil palm EFB in the presence of oxygen,” Fuel, vol. 103, pp. 156–160, 2013, doi: https://doi.org/10.1016/j.fuel.2011.11.018.
G. Talero, S. Rincón, and A. Gómez, “Torrefaction of oil palm residual biomass: Thermogravimetric characterization,” Fuel, vol. 242, pp. 496–506, 2019, doi: https://doi.org/10.1016/j.fuel.2019.01.057.
N. Yaacob, N. A. Rahman, S. Matali, S. S. Idris, and A. B. Alias, “An overview of oil palm biomass torrefaction: Effects of temperature and residence time,” IOP Conf. Ser. Earth Environ. Sci., vol. 36, no. 1, 2016, doi: 10.1088/1755-1315/36/1/012038.
F. X. Collard and J. Blin, “A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin,” Renew. Sustain. Energy Rev., vol. 38, pp. 594–608, 2014, doi: 10.1016/j.rser.2014.06.013.
R. R. Bakker, “Biomass Fuel Leaching for the Control of Fouling, Slagging, and Agglomeration in Biomass Power Generation,” University of California, 2000.
H. G. Schwatzberg, “Leaching-Organic Materials,” in R. W. Rousseau (Ed): Handbook of Separation Process Technology, John Wiley & Sons Inc., 1987.
K. L. Chin et al., “Reducing ash related operation problems of fast growing timber species and oil palm biomass for combustion applications using leaching techniques,” Energy, vol. 90, pp. 622–630, 2015, doi: 10.1016/j.energy.2015.07.094.
A. Seidell, Solubilities of Inorganic and Organic Compound: A Compilation of Quantitative Solubility Data from The Periodical Literature, 2nd Edition, 2nd ed. New York: D. Van Nostrand Company, 1919.
R. K. Prabhudesai, “Leaching,” in P. A. Schweitzer : Handbook of Separation Techniques for Chemical Engineers, McGraw-Hill, 1979.
P. Ragel, N. Raddatz, E. O. Leidi, F. J. Quintero, and J. M. Pardo, “Regulation of K + nutrition in plants,” Front. Plant Sci., vol. 10, no. March, 2019, doi: 10.3389/fpls.2019.00281.
M. J. C. van der Stelt, H. Gerhauser, J. H. A. Kiel, and K. J. Ptasinski, “Biomass upgrading by torrefaction for the production of biofuels: A review,” Biomass and Bioenergy, vol. 35, no. 9, pp. 3748–3762, 2011, doi: https://doi.org/10.1016/j.biombioe.2011.06.023.
Y. Uemura, W. N. Omar, T. Tsutsui, and S. B. Yusup, “Torrefaction of oil palm wastes,” Fuel, vol. 90, no. 8, pp. 2585–2591, 2011, doi: 10.1016/j.fuel.2011.03.021.
T. Thaim and R. A. Rasid, “Improvement Empty Fruit Bunch Properties through Torrefaction,” Aust. J. Basic Appl. Sci., vol. 10, no. 17, pp. 114–121, 2016.
B. B. Nyakuma, A. Ahmad, A. Johari, T. A. T. Abdullah, and O. Oladokum, “Torrefaction of Pelletized Oil Palm Empty Fruit Bunches,” 21st Int. Symp. Alcohol Fuels – 21st ISAF Torrefaction, no. May, pp. 15–19, 2015, doi: http://dx.doi.org/10.1007/s11199-007-9278-1.
M. A. H. M. Fuad, H. M. Faizal, and F. N. Ani, “Experimental investigation on water washing and decomposition behaviour for empty fruit bunch,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 59, no. 2, pp. 207–219, 2019.
C. Loix, M. Huybrechts, J. Vangronsveld, M. Gielen, E. Keunen, and A. Cuypers, “Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants,” Front. Plant Sci., vol. 8, no. October, pp. 1–19, 2017, doi: 10.3389/fpls.2017.01867.
Y. Chen, B. Liu, H. Yang, Q. Yang, and H. Chen, “Evolution of functional groups and pore structure during cotton and corn stalks torrefaction and its correlation with hydrophobicity,” Fuel, vol. 137, pp. 41–49, 2014, doi: 10.1016/j.fuel.2014.07.036.
A. J. Stamm, “Thermal Degradation of Wood and Cellulose,” Ind. Eng. Chem., vol. 48, no. 3, pp. 413–417, Mar. 1956, doi: 10.1021/ie51398a022.
V. Srivastava, L. S. McKee, and V. Bulone, “Plant Cell Walls,” in eLS, no. July, Chichester, UK: John Wiley & Sons, Ltd, 2017, pp. 1–17.
A. Dyjakon, T. Noszczyk, and M. Smȩdzik, “The influence of torrefaction temperature on hydrophobic properties ofwaste biomass from food processing,” Energies, vol. 12, no. 24, pp. 1–17, 2019, doi: 10.3390/en12244609.
J. J. Chew, M. Soh, J. Sunarso, S. T. Yong, V. Doshi, and S. Bhattacharya, “Gasification of torrefied oil palm biomass in a fixed-bed reactor: Effects of gasifying agents on product characteristics,” J. Energy Inst., vol. 93, no. 2, pp. 711–722, 2020, doi: 10.1016/j.joei.2019.05.010.
DOI: https://doi.org/10.18196/jmpm.v5i2.14109
Refbacks
- There are currently no refbacks.
Editorial Office :
JMPM (Jurnal Material dan Proses Manufaktur)
Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.
Jl. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia
Email: jmpm@umy.ac.id
(62)274-387656 (62)274-387656