Corrosion monitoring of friction welded joints results between low carbon steel-SS 202
Abstract
Pada penelitian ini, pemantauan korosi dilakukan pada sambungan las gesekan baja karbon rendah dan baja tahan karat austenitik (SS 202) yang disimulasikan dalam larutan biologis. Penelitian ini bertujuan menghitung laju korosi sambungan las gesek baja karbon rendah dan SS 202 serta mengevaluasi kekasaran permukaan yang terjadi pada zona pengelasan. Dari hasil sambungan las, dibuat sampel uji korosi dengan mewakili zona pengelasan. Sebelum perendaman, permukaan sampel dibersihkan dan dipoles sebelum perendaman menggunakan larutan elektrolit NaCl 0,9wt.%. Percobaan dijalankan pada 2, 4, 6, dan 8 minggu masing-masing sampel. Hasil penelitian menunjukkan bahwa laju korosi sambungan las gesek baja karbon rendah dan SS 202 tertinggi sebesar 0,0167 mm/tahun, dan terendah 0,0127 mm/tahun. Pada saat yang sama, area sambungan las yang memiliki kekasaran permukaan tertinggi terjadi pada zona plastis. Disimpulkan bahwa seluruh zona pengelasan menunjukkan potensi korosi yang seragam kecuali zona plastis yang menunjukkan perilaku korosi galvanik.
ABSTRACT
In this study, corrosion monitoring was carried out in the friction welded joint of low carbon steel and austenitic stainless steel (SS 202) simulated in a biological solution. This study aims to calculate the corrosion rate of friction welding joints of low carbon steel and SS 202 and evaluate the surface roughness that occurs in the welding zone. From the results of welded joints, corrosion test samples were made by representing the welding zone. Prior to immersion, the surface of the sample was cleaned and polished before immersion using a 0.9wt.% NaCl electrolyte solution. Experiments were run at 2, 4, 6, and 8 weeks of each sample. The results showed that the corrosion rate of friction welding joints for low carbon steel and SS 202, the highest was 0.0167 mm/year, and the lowest was 0.0127 mm/year. At the same time, the welded joint area that has the highest surface roughness occurs in the plasticized zone. It was concluded that the entire welding zone showed uniform corrosion potential except for the plasticized zone, which showed galvanic corrosion behavior.
Keywords
Full Text:
PDFReferences
A. K. Nasution, N. S. Murni, N. B. Sing, M. H. Idris, and H. Hermawan, “Partially degradable friction‐welded pure iron–stainless steel 316L bone pin,” J. Biomed. Mater. Res. Part B Appl. Biomater., vol. 103, no. 1, pp. 31–38, 2015.
A. K. Nasution, P. Nawangsari, A. Junaidi, and H. Hermawan, “Friction welding of AZ31-SS316L for partially-degradable orthopaedic pins,” in IOP Conference Series: Materials Science and Engineering, 2019, vol. 532, no. 1, p. 12014.
H. K. Rafi, G. D. J. Ram, G. Phanikumar, and K. P. Rao, “Microstructure and tensile properties of friction welded aluminum alloy AA7075-T6,” Mater. Des., vol. 31, no. 5, pp. 2375–2380, 2010.
N. Özdemir, “Investigation of the mechanical properties of friction-welded joints between AISI 304L and AISI 4340 steel as a function rotational speed,” Mater. Lett., vol. 59, no. 19–20, pp. 2504–2509, 2005.
H. Liu, Y. Aoki, Y. Aoki, K. Ushioda, and H. Fujii, “Principle for obtaining high joint quality in dissimilar friction welding of Ti-6Al-4V alloy and SUS316L stainless steel,” J. Mater. Sci. Technol., vol. 46, pp. 211–224, 2020.
A. K. Nasution, M. F. Ulum, M. R. A. Kadir, and H. Hermawan, “Mechanical and corrosion properties of partially degradable bone screws made of pure iron and stainless steel 316L by friction welding,” Sci. China Mater., vol. 61, no. 4, pp. 593–606, 2018.
A. Farooq, M. Azam, and K. M. Deen, “Corrosion behavior of stainless steel weldments in physiological solutions,” Mater. Res. Express, vol. 5, no. 1, p. 15401, 2018.
ASTM Standard G-31, “Standard Practice for Laboratory Immersion Corrosion Testing of Metals, Annual Book of ASTM Standards,” ASTM Int. West Conshohocken, USA., vol. 3.02, p. 101, 2021.
P. Sathiya, S. Aravindan, and A. N. Haq, “Effect of friction welding parameters on mechanical and metallurgical properties of ferritic stainless steel,” Int. J. Adv. Manuf. Technol., vol. 31, no. 11–12, pp. 1076–1082, 2007.
Y. Chen et al., “Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline,” Corros. Sci., vol. 111, pp. 541–555, 2016.
S. Zhu et al., “Biocompatibility of pure iron: in vitro assessment of degradation kinetics and cytotoxicity on endothelial cells,” Mater. Sci. Eng. C, vol. 29, no. 5, pp. 1589–1592, 2009.
DOI: https://doi.org/10.18196/jmpm.v5i2.14110
Refbacks
- There are currently no refbacks.
Editorial Office :
JMPM (Jurnal Material dan Proses Manufaktur)
Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.
Jl. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia
Email: jmpm@umy.ac.id
Telp/Fax: (62)274-387656
Whatsapp: 085642095827