Evaluasi Laju Pengelasan terhadap Mikrostruktur Sambungan Aluminium 5052 dengan menggunakan Metode Friction Stir Welding
Abstract
Friction stir welding (FSW) adalah salah satu jenis pengelasan yang mampu menyambung bahan paduan aluminium. Pada penelitian sebelumnya telah dilakukan penyambungan aluminium 5052 namun hasil pengujian tarik memperlihatkan penurunan kekuatan sambungan. Sehingga pada studi ini bertujuan untuk mengevaluasi secara focus mikrostuktur yang terbentuk pada sambungan plat aluminium 5052 yang telah dilakukan FSW. Plat aluminium dengan dimensi 150 x 75 mm dengan tebal 6 mm dilas dengan metode FSW, pahat pin berbentuk silinder pada kecepatan putar 1000 rpm dan laju pengelasan 20, 30 dan 40 mm/menit. Penampang hasil las diamati dengan menggunakan mikroskop optic dan Scanning Electron Microscope (SEM). Hasil pengamatan memperlihatkan adanya cacat makro dan perubahan struktur mikro pada sambungan. Cacat ini dipengaruhi desain pin yang tidak tepat sehingga daerah adukan tidak merata yang berakibat sambungan menjadi tidak sempurna.
Friction stir welding (FSW) is one type of welding that is able to joining aluminium alloy. In previous studies, aluminium 5052 has been joined, but the results of the tensile test showed a decrease in the strength of the connection. Therefore, in this study the aim is to focus on evaluating the microstructure formed at the 5052 aluminium plate welding join that has been carried out by FSW. Aluminium plates with dimensions of 150 x 75 mm with a thickness of 6 mm were welded by the FSW method, cylindrical pin chisel at a rotational speed of 1000 rpm and welding rates of 20, 30 and 40 mm/minute. The cross section of the weld was observed using an optical microscope and Scanning Electron Microscope (SEM). The results of the observations showed that there were macro defects and changes in the microstructure of the joints. This defect is influenced by the improper design of the pin so that the area of the mixture is uneven which results in an imperfect connection
Keywords
Full Text:
PDFReferences
C.-H. Ng, S. N. . Yahaya, and A. A. . Majid, “Reviews on aluminum alloy series and its applications,” Acad. J. Sci. Res., vol. 5, no. 12, pp. 708–716, 2017, doi: 10.15413/ajsr.2017.0724.
I. Kwee, W. De Waele, and K. Faes, “Weldability of high-strength aluminium alloy EN AW-7475-T761 sheets for aerospace applications, using refill friction stir spot welding,” Weld. World, vol. 63, no. 4, pp. 1001–1011, 2019, doi: 10.1007/s40194-019-00732-1.
J. Kumar, S. Majumder, A. Kumar, and R. Kumar, “In fl uence of rotation speed , transverse speed , and pin length during underwater friction stir welding ( UW-FSW ) on aluminum AA6063 : A novel criterion for parametric control,” Int. J. Light. Mater. Manuf., vol. 5, no. 3, pp. 295–305, 2022, doi: 10.1016/j.ijlmm.2022.03.001.
N. D. Ghetiya and K. M. Patel, “Welding speed effect on joint properties in air and immersed friction stir welding of AA2014,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 231, no. 5, pp. 897–909, Feb. 2017, doi: 10.1177/0954405417690555.
Z. Su, Z. Zhu, Y. Zhang, H. Zhang, and Q. Xiao, “Recrystallization Behavior of a Pure Cu Connection Interface with Ultrasonic Welding,” Metals , vol. 11, no. 1. 2021. doi: 10.3390/met11010061.
M. Song and R. Kovacevic, “Numerical and experimental study of the heat transfer process in friction stir welding,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 217, no. 1, pp. 73–85, Jan. 2003, doi: 10.1243/095440503762502297.
H. Zhang, J. H. Huang, S. B. Lin, L. Wu, and J. G. Zhang, “Temperature simulation of the preheating period in friction stir welding based on the finite element method,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 220, no. 7, pp. 1097–1106, Jul. 2006, doi: 10.1243/09544054JEM425.
R. W. Fonda and J. F. Bingert, “Microstructural evolution in the heat-affected zone of a friction stir weld,” Metall. Mater. Trans. A, vol. 35, no. 5, pp. 1487–1499, 2004, doi: 10.1007/s11661-004-0257-7.
M. A. Furqon, “Analisis Sifat Mekanik pada Pengelasan Friction Stir Welding Alumunium 5052 dengan Parameter Kecepatan Laju Las.,” Jurusan Teknik Mesin Fakultas Teknik Universitas Wahid Hasyim, 2022.
G. Çam, S. Güçlüer, A. Çakan, and H. T. Serinda, “Mechanical properties of friction stir butt-welded Al-5086 H32 plate,” vol. 30, no. 2, pp. 151–156, 2008.
M. Budi Nur Rahman, A. Widyo Nugroho, and B. Satriya Wardhana, “Pengaruh Feed Rate dan Kecepatan Putar Pin Tool Friction Stir Welding (FSW) terhadap Kekuatan Tarik dan Kekerasan Aluminium 5052,” JMPM (Jurnal Mater. dan Proses Manufaktur), vol. 2, no. 2, pp. 83–95, 2018, doi: 10.18196/jmpm.2224.
S. Leon, J. Leon, G. Bharathiraja, and J. Vijayarangan, “A review on Friction Stir Welding in Aluminium Alloys A review on Friction Stir Welding in Aluminium Alloys A review on Friction Stir Welding in Aluminium Alloys,” no. October, 2020, doi: 10.1088/1757-899X/954/1/012007.
G. Venkat Ramana, B. Yelamasetti, and T. Vishnu Vardhan, “Effect of FSW process parameters and tool profile on mechanical properties of AA 5082 and AA 6061 welds,” Mater. Today Proc., vol. 46, pp. 826–830, 2021, doi: https://doi.org/10.1016/j.matpr.2020.12.801.
A. Muthumanickam, P. Gandham, and S. Dhenuvakonda, “Effect of Friction Stir Welding Parameters on Mechanical Properties and Microstructure of AA2195 Al–Li Alloy Welds,” Trans. Indian Inst. Met., vol. 72, no. 6, pp. 1557–1561, 2019, doi: 10.1007/s12666-019-01570-x.
V. Devuri, N. Mandal, M. Mahapatra, and HARSH, “Tool design effects for FSW of AA7039,” Weld. J., vol. 92, pp. 41s-47s, 2013.
G. Reddy, M. P., C. Murthy, M. Thondapi, and N. Viswanathan, “Microstructure, Residual Stress Distribution and Mechanical Properties of Friction-Stir AA 6061 Aluminium Alloy Weldments,” 2006.
W. Setiawan, D. B. Darmadi, W. Suprapto, and R. Soenoko, “The position of the joints with angle of 90° at friction stir welding (FSW),” MM Sci. J., vol. 2018, no. March, pp. 2128–2135, 2018, doi: 10.17973/MMSJ.2018_03_201717.
K. P. Mehta and V. J. Badheka, “A Review on Dissimilar Friction Stir Welding of Copper to Aluminum: Process, Properties, and Variants,” Mater. Manuf. Process., vol. 31, no. 3, pp. 233–254, Feb. 2016, doi: 10.1080/10426914.2015.1025971.
N. Soni and C. Sangam, Defects Formation during Friction Stir Welding: A Review. 2016. doi: 10.13140/RG.2.2.19381.93921.
A. I. Albannai, “Review The Common Defects In Friction Stir Welding,” Int. J. Sci. Technol. Res., vol. 9, no. 11, pp. 318–329, 2020, [Online]. Available: www.ijstr.org
Y. Z. Guoqing Wang Yunfei Hao, “Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing,” Journal of Materials Sciences and Technology, vol. 34, no. 1. pp. 73–91.
X. Cao and M. Jahazi, “Effect of tool rotational speed and probe length on lap joint quality of a friction stir welded magnesium alloy,” Mater. Des., vol. 32, pp. 1–11, Jan. 2011, doi: 10.1016/j.matdes.2010.06.048.
K. P. Mehta and V. J. Badheka, “Influence of tool pin design on properties of dissimilar copper to aluminum friction stir welding,” Trans. Nonferrous Met. Soc. China, vol. 27, no. 1, pp. 36–54, 2017, doi: https://doi.org/10.1016/S1003-6326(17)60005-0.
H. Liu, H. Zhang, and L. Yu, “Homogeneity of Mechanical Properties of Underwater Friction Stir Welded 2219-T6 Aluminum Alloy,” J. Mater. Eng. Perform., vol. 20, pp. 1419–1422, Nov. 2010, doi: 10.1007/s11665-010-9787-x.
O. Barooni, M. Abbasi, M. Givi, and B. Bagheri, “New method to improve the microstructure and mechanical properties of joint obtained using FSW,” Int. J. Adv. Manuf. Technol., vol. 93, no. 9, pp. 4371–4378, 2017, doi: 10.1007/s00170-017-0810-3.
B. Bagheri, M. Abbasi, and A. Abdollahzadeh, “Microstructure and mechanical characteristics of AA6061-T6 joints produced by friction stir welding, friction stir vibration welding and tungsten inert gas welding: A comparative study,” Int. J. Miner. Metall. Mater., vol. 28, no. 3, pp. 450–461, 2021, doi: 10.1007/s12613-020-2085-1.
J.-Q. Su, T. W. Nelson, and C. J. Sterling, “Microstructure evolution during FSW/FSP of high strength aluminum alloys,” Mater. Sci. Eng. A, vol. 405, no. 1, pp. 277–286, 2005, doi: https://doi.org/10.1016/j.msea.2005.06.009.
D. Sejani, W. Li, and V. Patel, “Stationary shoulder friction stir welding – low heat input joining technique: a review in comparison with conventional FSW and bobbin tool FSW,” Crit. Rev. Solid State Mater. Sci., pp. 1–50, Jul. 2021, doi: 10.1080/10408436.2021.1935724.
R. T. Rahman, A. W. Nugroho, and T. Suwanda, “Disain dan Pembuatan Alat Preheat Induksi pada Pengelasan Gesek Logam Dissimilar,” JMPM (Jurnal Mater. dan Proses Manufaktur), vol. 3, no. 2, pp. 75–82, 2019, doi: 10.18196/jmpm.3240.
P. K. Sahu and S. Pal, “Effect of FSW parameters on microstructure and mechanical properties of AM20 welds,” Mater. Manuf. Process., vol. 33, no. 3, pp. 288–298, Feb. 2018, doi: 10.1080/10426914.2017.1279295.
Z. Y. Ma, A. H. Feng, D. L. Chen, and J. Shen, “Recent Advances in Friction Stir Welding/Processing of Aluminum Alloys: Microstructural Evolution and Mechanical Properties,” Crit. Rev. Solid State Mater. Sci., vol. 43, no. 4, pp. 269–333, Jul. 2018, doi: 10.1080/10408436.2017.1358145.
DOI: https://doi.org/10.18196/jmpm.v6i2.15005
Refbacks
- There are currently no refbacks.
Editorial Office :
JMPM (Jurnal Material dan Proses Manufaktur)
Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.
Jl. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia
Email: jmpm@umy.ac.id
(62)274-387656 (62)274-387656