Pengaruh Parameter Proses Thermoforming Terhadap Distribusi Ketebalan dan Akurasi Dimensi Produk

Cahyo Budiyantoro, Perwita Kurniawan

Abstract


Penelitian ini melihat pengaruh parameter-proses thermoforming, yaitu waktu pemanasan, pre-stretching degree, dan tingkat evakuasi vakum, terhadap distribusi ketebalan dinding dan akurasi dimensi produk plastik yang diproses dengan thermoforming. Penelitian dilakukan serangkaian percobaan dengan tiga variasi parameter-proses tersebut.   Waktu pemanasan divariasikan masing-masing 30, 35 dan 40 detik, pre-stretching degree dari 0,1 hingga 0,3, dan evacuation rate dalam nilai 6 mm/detik, 8 mm/detik dan 10 mm/detik. Hasil penelitian menunjukkan bahwa parameter yang mampu meminimalkan radius pada sudut specimen adalah: tingkat evakuasi 10 mm/detik, waktu pemanasan 40 detik dan derajad pre-stretching 0,1 Vst.   Hasil produk vacuum forming dapat dioptimalkan dengan kombinasi tingkat evakuasi vakum yang tinggi, waktu pemanasan lebih lama dan derajad pre-stretching rendah.

 

This study examines the influence of thermoforming process parameters, namely heating time, pre-stretching degree, and vacuum evacuation rate, on the distribution of wall thickness and dimensional accuracy of the product. The research involved a series of experiments with three variations of these process parameters. Heating time was varied at 30, 35, and 40 seconds, pre-stretching degree ranged from 0.1 to 0.3, and evacuation rates were set at 6 mm/s, 8 mm/s, and 10 mm/s, respectively. The results showed that the parameters capable of minimizing the radius at the specimen's corners were a vacuum evacuation rate of 10 mm/s, a heating time of 40 seconds, and a pre-stretching degree of 0.1 Vst. The findings suggest that the vacuum forming products can be optimized by combining a high vacuum evacuation rate, longer heating time, and low pre-stretching degree.


Keywords


Thermoforming; wall thickness distribution; dimensional accuracy; processing parameters

Full Text:

PDF

References


I. Mansoor, A. Naseer, and A. Qadeer, “Manufacturing of Economical Packing by Using Vacuum Forming Technique †,” Eng. Proc., vol. 12, no. 1, pp. 10–13, 2022, doi: 10.3390/engproc2021012074.

W. de O. Leite, J. C. C. Rubio, F. M. Cabrera, A. Carrasco, and I. Hanafi, “Vacuum thermoforming process: An approach to modeling and optimization using artificial neural networks,” Polymers (Basel)., vol. 10, no. 2, 2018, doi: 10.3390/polym10020143.

Z. Ayhan and Q. H. Zhang, “Wall thickness distribution in thermoformed food containers produced by a Benco aseptic packaging machine,” Polym. Eng. Sci., vol. 40, no. 1, pp. 1–10, 2000, doi: 10.1002/pen.11134.

E. Sasimowski, “The use of utility function for optimization of thermoforming,” Polimery/Polymers, vol. 63, no. 11–12, pp. 807–814, 2018, doi: 10.14314/polimery.2018.11.9.

O. Eksi and S. Karabeyoğlu, “The Effect of Process Parameters on Thickness Distribution in Thermoforming,” Adv. Sci. Technol. Res. J., vol. 11, no. 2, pp. 198–204, 2017, doi: 10.12913/22998624/71147.

S. Karabeyoglu, O. Ekşi, and E. Erdoğan, “An Experimental Study on Wall Thickness Distribution in Thermoforming,” Adv. Sci. Technol. Res. J., vol. 11, no. 3, pp. 139–142, 2017, doi: 10.12913/22998624/71148.

Pulixin, “HIPS Sheet,” 2022. https://pulixin.com.hk/ps-sheet-roll.html

Formech, “Floor Standing Vacuum Forming Machine 508,” Hertfordshire, 2022.

N. Adhikari, N. S. Timilsina, S. Gautam, S. Kaphle, and P. L. Shrestha, “Design and simulation of components of vacuum forming machine using household vacuum cleaner,” J. Eng. Issues Solut., vol. 1, no. 1, pp. 138–157, 2021, doi: 10.3126/joeis.v1i1.36834.

D. J. Lee and I. J. Shin, “Effects of vacuum, mold temperature and cooling rate on mechanical properties of press consolidated glass fiber/PET composite,” Compos. Part A Appl. Sci. Manuf., vol. 33, no. 8, pp. 1107–1114, 2002, doi: 10.1016/S1359-835X(02)00051-9.

M. S. Jamil, R. Khalid, A. Zulqarnain, and M. Salman, “IMPROVING THERMOFORM PRODUCTIVITY : CASE OF DESIGN-OF-EXPERIMENT,” J. Qual. Technol. Manag., vol. XV, no. I, pp. 87–106, 2018.

Formech, “Vacuum Forming Guide,” 2012. [Online]. Available: http://www.advancedtek.com/wp-content/uploads/2018/12/Vacuum-Forming-Guide.pdf

T. Penttil, “THERMOFORMING : THE EFFECTS OF MACHINE PARAMETERS TO THE PROCESS AND END PRODUCT,” 2020.

E. Sasimowski and P. Filipek, “Thermoforming of a Polystyrene Sheet with a Vibrating Male Mold,” Adv. Sci. Technol. Res. J., vol. 13, no. 4, pp. 246–254, 2019, doi: 10.12913/22998624/114028.

Illig, “Illig sheet forming process-controlled machines,” Heilbronn, 2021.

E. S. Erdogan and O. Eksi, “Prediction of wall thickness distribution in simple thermoforming moulds,” Stroj. Vestnik/Journal Mech. Eng., vol. 60, no. 3, pp. 195–202, 2014, doi: 10.5545/sv-jme.2013.1486.




DOI: https://doi.org/10.18196/jmpm.v7i1.18717

Refbacks

  • There are currently no refbacks.


 


Editorial Office :

JMPM (Jurnal Material dan Proses Manufaktur)

Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.

Jl. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia

Email: jmpm@umy.ac.id

 (62)274-387656     (62)274-387656