Optimizing Solar Energy Production in Partially Shaded PV Systems with PSO-INC Hybrid Control

Sarah Abboud, Azeddine Loulijat, Abdellah Boulal, El Alami Semma, Rachid Habachi, Hamid Chojaa, Alfian Ma'arif, Iswanto Suwarno, Mahmoud A. Mossa

Abstract


Partial shading, from obstacles such as buildings or trees, is a major challenge for photovoltaic systems, causing unpredictable fluctuations in solar energy production and underlining the need for advanced energy management strategies. In this paper, we propose an innovative approach that combines hybrid metaheuristic optimization with maximum power point tracking control (MPPT), using particle swarm optimization (PSO) in conjunction with the incremental conductance (IC) algorithm. We compare the proposed method with the conventional Perturb and Observation (P&O) algorithm. The choice of P&O as a comparison method is due to its simplicity, its familiarity with the scientific literature, its low cost of implementation. The main objective of swarm optimization combined with the IC algorithm lies in its ability to overcome the challenges posed by partial shading, ensuring accurate and efficient tracking of the point of maximum power, thanks to dynamic adaptation to variations in solar irradiation, thus enhancing the performance and resilience of the photovoltaic system. This approach  is of crucial importance, offering considerable potential for solving the complex challenges associated with partial shading. Our results show that this hybrid MPPT algorithm offers superior tracking efficiency > 98% , faster convergence 500ms , better stability and increased robustness compared to traditional MPPT approaches. The system is composed of a PV and a boost converter that connects the input to the resistive load. The algorithms were implemented with MATLAB/Simulink as the simulation tool. These results not only reinforce the viability of sustainable energy solutions, but also open the way for the development of more sustainable energy solutions.The perspectives of this work are oriented towards a practical and extended integration of the proposed hybrid approach in real photovoltaic systems, with a particular emphasis on experimental validation.

Keywords


Photovoltaic; MPPT; Partially Shaded Condition; Hybrid; Particle Swarm Optimization; Incremental Conductance; Perturb and Observe; Boost Converter; Energy Management.

Full Text:

PDF

References


M. A. Mesbah et al., “Adaptive Control Approach for Accurate Current Sharing and Voltage Regulation in DC Microgrid Applications,” Energies, vol. 17, no. 2, p. 284, 2024, doi: 10.3390/en17020284.

A. Hilali, N. El Ouanjli, S. Mahfoud, A. S. Al-Sumaiti, and M. A. Mossa, “Optimization of a Solar Water Pumping System in Varying Weather Conditions by a New Hybrid Method Based on Fuzzy Logic and Incremental Conductance,” Energies, vol. 15, p. 8518, 2022.

A. Harrag, S. Messalti, and Y. Daili, “Innovative Single Sensor Neural Network PV MPPT,” 6th International Conference on Control, Decision and Information Technologies, pp. 1895-1899, 2019.

C. H. Hussaian Basha, and C. Rani, “Performance Analysis of MPPT Techniques for Dynamic Irradiation Condition of Solar PV,” International Journal of Fuzzy Systems, vol. 22, no. 8, pp. 2577-2598, 2020.

N. Priyadarshi, S. Padmanaban, J. B. Holm-Nielsen, F. Blaabjerg, and M. S. Bhaskar, "An Experimental Estimation of Hybrid ANFIS–PSO-Based MPPT for PV Grid Integration Under Fluctuating Sun Irradiance," in IEEE Systems Journal, vol. 14, no. 1, pp. 1218-1229, March 2020, doi: 10.1109/JSYST.2019.2949083.

R. B. Bollipo, S. Mikkili, and P. K. Bonthagorla, "Hybrid, optimal, intelligent and classical PV MPPT techniques: A review," in CSEE Journal of Power and Energy Systems, vol. 7, no. 1, pp. 9-33, Jan. 2021, doi: 10.17775/CSEEJPES.2019.02720.

A. Raj, S. R. Arya, and J. Gupta, “Solar PV array-based DC–DC converter with MPPT for low power applications,” Renewable Energy Focus, vol. 34, pp. 109-119, 2020.

R. Anand, D. Swaroop, and B. Kumar, "Global Maximum Power Point Tracking for PV Array under Partial Shading using Cuckoo Search," 2020 IEEE 9th Power India International Conference (PIICON), pp. 1-6, 2020, doi: 10.1109/PIICON49524.2020.9113004.

H. Li, D. Yang, W. Su, J. Lü, and X. Yu, “An overall distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading,” IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 265–275, Jan. 2019.

N. Priyadarshi, S. Padmanaban, J. B. Holm-Nielsen, F. Blaabjerg, and M. S. Bhaskar, “An experimental estimation of hybrid ANFIS–PSO-based MPPT for PV grid integration under fluctuating sun irradiance,” IEEE Syst. J., vol. 14, no. 1, pp. 1218–1229, Mar. 2020.

K. Guo, L. Cui, M. Mao, L. Zhou, and Q. Zhang, “An improved gray wolf optimizer MPPT algorithm for PV system with BFBIC converter under partial shading,” IEEE Access, vol. 8, pp. 103476–103490, 2020.

E. Mendez, A. Ortiz, P. Ponce, I. Macias, D. Balderas, and A. Molina, “Improved MPPT algorithm for photovoltaic systems based on the earthquake optimization algorithm,” Energies, vol. 13, no. 12, p. 3047, Jun. 2020.

G. S. Chawda, O. P. Mahela, N. Gupta, M. Khosravy, and T. Senjyu, “Incremental conductance based particle swarm optimization algorithm for global maximum power tracking of solar-PV under nonuniform operating conditions,” Appl. Sci., vol. 10, no. 13, p. 4575, Jul. 2020

M. A. Memon, “Sizing of DC-link capacitor for a grid connected solar photovoltaic inverter,” Indian J. Sci. Technol., vol. 13, no. 22, pp. 2272–2281, Jun. 2020.

M. A. Mossa, O. Gam, and N. Bianchi, "Performance enhancement of a hybrid renewable energy system accompanied with energy storage unit using effective control system,” Int. J. Robot. Control. Syst., vol. 2, no. 1, pp. 140-171, 2022.

G. S. Chawda, O. P. Mahela, N. Gupta, M. Khosravy, and T. Senjyu, “Incremental conductance based particle swarm optimization algorithm for global maximum power tracking of solar-PV under nonuniform operating conditions,” Appl. Sci., vol. 10, no. 13, p. 4575, Jul. 2020.

M. A. Mossa, N. E. Ouanjli, O. Gam, and O. M. Kamel, "Performance improvement of a hybrid energy system feeding an isolated load," 2022 23rd International Middle East Power Systems Conference (MEPCON), pp. 1-8, 2022.

M. A. Mossa, N. E. Ouanjli, O. Gam, and T. D. Do, “Enhancing the Performance of a Renewable Energy System Using a Novel Predictive Control Method,” Electronics, vol. 12, p. 3408, 2023.

S. M. Sousa, L. S. Gusman, T. A. S. Lopes, H. A. Pereira, and J. M. S. Callegari, “MPPT algorithm in single loop current-mode control applied to dc–dc converters with input current source characteristics,” International Journal of Electrical Power and Energy Systems, vol. 138, 2022, doi: 10.1016/j.ijepes.2021.107909.

G. M. Zhang, Y. L. Liu, and B. J. YE, “A variable step disturbance observation method in applying PV MPPT,” Journal of xi’an engineering university, vol. 4, pp. 433-439, 2019.

H. Li, D. Yang, W. Su, J. Lü, and X. Yu, “An overall distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading,” IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 265–275, Jan. 2019.

K. Saidi, M. Maamoun, and M. Bounekhla, “A new high performance variable step size perturb-and-observe MPPT algorithm for photovoltaic system,” Int. J. Power Electron. Drive Syst. (IJPEDS), vol. 10, no. 3, p. 1662, Sep. 2019.

S. Bhattacharyya, P. D. S. Kumar, S. Samanta, and S. Mishra, “Steady output and fast tracking MPPT (SOFT-MPPT) for P&O and InC algorithms,” IEEE Trans. Sustain. Energy, vol. 12, no. 1, pp. 293–302, Jan. 2021.

E. Mendez, A. Ortiz, P. Ponce, I. Macias, D. Balderas, and A. Molina, “Improved MPPT algorithm for photovoltaic systems based on the earthquake optimization algorithm,” Energies, vol. 13, no. 12, p. 3047, Jun. 2020.

S. Abboud, R. Habachi, A. Boulal, and S. El Alami, “Maximum power point tracker using an intelligent sliding mode controller of a photovoltaic system,” International Journal of Power Electronics and Drive Systems, vol. 14, no. 1, p. 516, 2023.

M. Hebchi, A. Kouzou, and A. Choucha, “Improved incremental conductance algorithm for MPPT in photovoltaic system,” in Proc. 18th Int. Multi-Conf. Syst., Signals Devices (SSD), pp. 1271–1278, Mar. 2021.

M. Elbar, I. Merzouk, A. Bealdel, M. M. Rezaoui, A. Iratni, and A. Hafaifa, “Power Quality Enhancement in Four-Wire Systems Under Different Distributed Energy Resource Penetration,” in Electrotehnica, Electronica, Automatica (EEA), vol. 69, no. 4, pp. 50-58, 2021.

K. Sabri, O. El Maguiri, and A. Farchi, "Comparative Study of Different MPPT Algorithms for Photovoltaic Systems under Partial Shading Conditions," 2021 9th International Renewable and Sustainable Energy Conference (IRSEC), pp. 1-7, 2021, doi: 10.1109/IRSEC53969.2021.9741164.

H. Li, D. Yang, W. Su, J. Lü, and X. Yu, “An overall distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading,” IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 265–275, Jan. 2019.

A. A. Z. Diab, M. A. Mohamed, A. Al-Sumaiti, H. Sultan, and M. A. Mossa, “Novel Hybrid Optimization Algorithm for Maximum Power Point Tracking of Partially Shaded Photovoltaic Systems. In Advanced Technologies for Solar Photovoltaics Energy Systems, pp. 201–230, 2021.

M. A. Mossa, O. Gam, N. Bianchi, and N. V. Quynh, "Enhanced Control and Power Management for a Renewable Energy-Based Water Pumping System," in IEEE Access, vol. 10, pp. 36028-36056, 2022, doi: 10.1109/ACCESS.2022.3163530.

Y. Zhang, Y.-J. Wang, and J. Q. Yu, “A Novel MPPT Algorithm for Photovoltaic Systems Based on Improved Sliding Mode Control,” Electronics, vol. 11, no. 15, p. 2421, 2022, doi: 10.3390/electronics11152421.

D. M. Djanssou, A. Dadjé, A. Tom, and N. Djongyang, “Improvement of the Dynamic Response of Robust Sliding Mode MPPT Controller-Based PSO Algorithm for PV Systems under Fast-Changing Atmospheric Conditions,” International Journal of Photoenergy, pp. 1–13, 2021, doi: 10.1155/2021/6671133.

H. Li, L. Zhao, and S. Tian, “Research on photovoltaic MPPT control Strategy based on improved sliding mode control,” Journal of Physics: Conference Series, vol. 2310, no. 1, p. 012039, 2022, doi: 10.1088/1742-6596/2310/1/012039.

A. Kihal, F. Krim, A. Laib, B. Talbi, and H. Afghoul, “An improved MPPT scheme employing adaptive integral derivative sliding mode control for photovoltaic systems under fast irradiation changes,” ISA Transactions, vol. 87, pp. 297–306, 2019, doi: 10.1016/j.isatra.2018.11.020.

F. Bodur and O. Kaplan, “Second-Order Sliding Mode Control Algorithms in DC/DC Buck Converter,” 2022 10th International Conference on Smart Grid (IcSmartGrid), pp. 380–386, 2022, doi: 10.1109/icSmartGrid55722.2022.9848696.

X. Dingyü, “Introduction to intelligent optimization methods,” in Solving Optimization Problems With MATLAB, pp. 297–299, 2020.

R. Singh, R. Yadav, L. Varshney, and S. Sharma, “Analysis and Comparison of PV Array MPPT Techniques to Increase Output Power,” 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), pp. 168–172, 2021, doi: 10.1109/ICACITE51222.2021.9404688.

A. Aldosary, Z. M. Ali, M. M. Alhaider, M. Ghahremani, S. Dadfar, and K. Suzuki, “A modified shuffled frog algorithm to improve MPPT controller in PV System with storage batteries under variable atmospheric conditions,” Control Engineering Practice, vol. 112, p. 104831, 2021, doi: 10.1016/j.conengprac.2021.104831.

R. Rahimi, S. Habibi, P. Shamsi, and M. Ferdowsi, “A High Step-Up Z-Source DC-DC Converter for Integration of Photovoltaic Panels into DC Microgrid,” 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1416–1420, 2021, doi: 10.1109/APEC42165.2021.9487463.

M. Drif, M. Bahri, and D. Saigaa, “A novel equivalent circuit-based model for photovoltaic sources,” Optik, vol. 242, p. 167046, 2021, doi: 10.1016/j.ijleo.2021.167046.

M. A. Mossa, H. Echeikh, N. V. Quynh, and N. Bianchi, “Performance dynamics improvement of a hybrid wind/fuel cell/battery system for standalone operation,” IET Renew. Power Gener., vol. 17, no. 2, pp. 349-375, 2022.

Z. M. S. Elbarbary and M. A. Alranini, “Review of maximum power point tracking algorithms of PV system,” Frontiers in Engineering and Built Environment, vol. 1, no. 1, pp. 68–80, 2021, doi: 10.1108/FEBE-03-2021-0019.

M. Derbeli, C. Napole, O. Barambones, J. Sanchez, I. Calvo, and P. Fernández-Bustamante, “Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications,” Energies, vol. 14, no. 22, p. 7806, 2021, doi: 10.3390/en14227806.

R. S. Inomoto, J. R. B. de A. Monteiro, and A. J. S. Filho, “Boost Converter Control of PV System Using Sliding Mode Control With Integrative Sliding Surface,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 5, pp. 5522–5530, 2022, doi: 10.1109/JESTPE.2022.3158247.

M. FatimaZohra, B. Mokhtar, and M. Benyounes, “Sliding mode performance control applied to a DFIG system for a wind energy production,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 6, p. 6139, 2020, doi: 10.11591/ijece.v10i6.pp6139-6152.

M. Jiang, M. Ghahremani, S. Dadfar, H. Chi, Y. N. Abdallah, and N. Furukawa, “A novel combinatorial hybrid SFL–PS algorithm based neural network with perturb and observe for the MPPT controller of a hybrid PV-storage system,” Control Engineering Practice, vol. 114, p. 104880, 2021, doi: 10.1016/j.conengprac.2021.104880.

S. Bhattacharyya, P. D. S. Kumar, S. Samanta, and S. Mishra, “Steady output and fast tracking MPPT (SOFT-MPPT) for P&O and InC algorithms,” IEEE Trans. Sustain. Energy, vol. 12, no. 1, pp. 293–302, Jan. 2021.

N. Swaminathan, N. Lakshminarasamma, and Y. Cao, “A Fixed Zone Perturb and Observe MPPT Technique for a Standalone Distributed PV System,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 1, pp. 361–374, 2022, doi: 10.1109/JESTPE.2021.3065916.

M. Aref, M. A. Mossa, N. K. Lan, N. V. Quynh, V. Oboskalov, and A. F. M. Ali, “Improvement of Fault Current Calculation and Static Security Risk for Droop Control of the Inverter-Interfaced DG of Grid-Connected and Isolated Microgrids,” Inventions, vol. 7, no. 3, p. 52, 2022, doi: 10.3390/inventions7030052.

S. Miqoi, A. el Ougli, and B. Tidhaf, “Adaptive fuzzy sliding mode based MPPT controller for a photovoltaic water pumping system,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 10, no. 1, p. 414, 2019, doi: 10.11591/ijpeds.v10.i1.pp414-422.

T. Abderrahim, T. Abdelwahed, and M. Radouane, “Improved strategy of an MPPT based on the sliding mode control for a PV system,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 3, p. 3074, 2020, doi: 10.11591/ijece.v10i3.pp3074-3085.

C. A. Ramos-Paja, D. Gonzalez-Motoya, J. P. Villegas-Seballos, S. I. Serna-Garces, and R. Giral, “Sliding-mode controller for a photovoltaic system based on a Cuk converter,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 3, p. 2027, 2021, doi: 10.11591/ijece.v11i3.pp2027-2044.

H. Chojaa et al., “Robust Control of DFIG-Based WECS Integrating an Energy Storage System With Intelligent MPPT Under a Real Wind Profile,” in IEEE Access, vol. 11, pp. 90065-90083, 2023, doi: 10.1109/ACCESS.2023.3306722.

H. Attia and A. Elkhateb, “Intelligent maximum power point tracker enhanced by sliding mode control,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 13, no. 2, p. 1037, 2022, doi: 10.11591/ijpeds.v13.i2.pp1037-1046.

A. W. Ibrahim, Z. Fang, K. Ameur, D. Min, M. B. Shafik, and G. Al-Muthanna, “Comparative study of solar pv system performance under partial shaded condition utilizing different control approaches,” Indian J. Sci. Technol., vol. 14, pp. 1864-1893, 2021, doi: 10.17485/IJST/v14i22.827.

M. Mohammadinodoushan, R. Abbassi, H. Jerbi, F. Waly Ahmed, H. Abdalqadir kh ahmed, and A. Rezvani, "A new MPPT design using variable step size perturb and observe method for PV system under partially shaded conditions by modified shuffled frog leaping algorithm- SMC controller," Sustain. Energy Technol. Assessments, vol. 45, p. 101056, 2021, doi: 10.1016/j.seta.2021.101056

Z. M. Ali, N. Vu Quynh, S. Dadfar, and H. Nakamura, "Variable step size perturb and observe MPPT controller by applying θ-modified krill herd algorithm-sliding mode controller under partially shaded conditions," J. Clean. Prod., vol. 271, p. 122243, 2020, doi: 10.1016/j.jclepro.2020.122243.

W. Hayder, E. Ogliari, A. Dolara, A. Abid, M. B. Hamed, and L. Sbita, "Improved PSO: A comparative study in MPPT algorithm for PV system control under partial shading conditions," Energies, vol. 13, no. 8, 2020, doi: 10.3390/en13082035.

S. Akram, L. Khalil, M. K. L. Bhatti, T. Aftab, R. Siddique, and M. Riaz, “Maximum Power Point Tracking using Direct Control with Cuckoo Search for Photovoltaic Module under Partial Shading Condition,” Pakistan Journal of Engineering and Technology, vol. 4, no. 2, pp. 28-31, 2021.

N. Swaminathan, N. Lakshminarasamma, and Y. Cao, "A Fixed Zone Perturb and Observe MPPT Technique for a Standalone Distributed PV System," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 1, pp. 361-374, Feb. 2022, doi: 10.1109/JESTPE.2021.3065916.

G. A. Raiker, U. Loganathan, and S. Reddy B., "Current Control of Boost Converter for PV Interface With Momentum-Based Perturb and Observe MPPT," in IEEE Transactions on Industry Applications, vol. 57, no. 4, pp. 4071-4079, July-Aug. 2021, doi: 10.1109/TIA.2021.3081519.

C. Rao, A. Hajjiah, M. A. El-Meligy, M. Sharaf, A. T. Soliman, and M. A. Mohamed, “A novel high-gain soft-switching DC DC converter with improved P&O MPPT for photovoltaic applications,” IEEE Access, vol. 9, pp. 58790–58806, 2021.

A. I. Ali, Z. M. Alaas, M. A. Sayed, A. Almalaq, A. Farah, and M. A. Mohamed, “An efficient MPPT technique-based single stage incremental conductance for integrated PV systems con sidering flyback central-type PV inverter,” Sustainability, vol. 14, no. 19, p. 12105, 2022.

K. Y. Yap, C. R. Sarimuthu, and J. M. Lim, “Artificial intelligence based MPPT techniques for solar power system: a review,” Journal of Modern Power Systems and Clean Energy, vol. 8, no. 6, pp. 1043–1059, 2020.

A. M. Noman, H. Khan, H. A. Sher, S. Z. Almutairi, M. H. Alqahtani, and A. S. Aljumah, “Scaled conjugate gradient artificial neural network-based ripple current correlation MPPT algorithms for PV system,” International Journal of Photoe nergy, vol. 2023, 2023.

M. S. Bouakkaz, A. Boukadoum, O. Boudebbouz, I. Attoui, N. Boutasseta, and A. Bouraiou, “Fuzfzy logic based adaptive step hill climbing MPPT algorithm for PV energy generation systems,” in 2020 International Conference on Computing and Information Technology (ICCIT-1441), pp. 1–5, 2020.

H. Li, D. Yang, W. Su, J. Lü, and X. Yu, “A novel distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading,” IEEE Transactions on Indus trial Electronics, vol. 66, no. 1, pp. 265–275, 2019.

K. Guo, L. Cui, M. Mao, L. Zhou, and Q. Zhang, “An improved gray wolf optimizer MPPT algorithm for PV system with BFBIC converter under partial shading,” IEEE Access, vol. 8, pp. 103476–103490, 2020.

M. Kermadi, S. Mekhilef, Z. Salam, J. Ahmed, and E. M. Ber kouk, “Assessment of maximum power point trackers perfor mance using direct and indirect control methods,” International Transactions on Electrical Energy Systems, vol. 30, no. 10, 2020.

J. Dadkhah and M. Niroomand, “Optimization methods of MPPT parameters for PV systems: review, classification, and comparison,” Journal of Modern Power Systems and Clean Energy, vol. 9, no. 2, pp. 225–236, 2021.

V. Kumar and M. Singh, “Derated mode of power generation in PVsystem using modified perturb andobserve MPPT Algorithm,” Journal of Modern Power Systems and Clean Energy, vol. 9, no. 5, pp. 1183–1192, 2021.

H. Abouadane, A. Fakkar, D. Sera, A. Lashab, S. Spataru, and T. Kerekes, “Multiple-power-sample based P&O MPPT for fast-changing irradiance conditions for a simple implementa tion,” IEEE Journal of Photovoltaics, vol. 10, no. 5, pp. 1481 1488, 2020.

P. Manoharan et al., "Improved Perturb and Observation Maximum Power Point Tracking Technique for Solar Photovoltaic Power Generation Systems," in IEEE Systems Journal, vol. 15, no. 2, pp. 3024-3035, June 2021, doi: 10.1109/JSYST.2020.3003255.

J. M. Riquelme-Dominguez and S. Martinez, "Comparison of Different Photovoltaic Perturb and Observe Algorithms for Drift Avoidance in Fluctuating Irradiance Conditions," 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), pp. 1-5, 2020, doi: 10.1109/EEEIC/ICPSEurope49358.2020.9160791.

J. Dadkhah and M. Niroomand, “Real-time MPPT optimiza tion of PV systems by means of DCD-RLS based identifica tion,” IEEE Transactions on Sustainable Energy, vol. 10, no. 4, pp. 2114–2122, 2019.

A. A. Z. Diab, H. M. Sultan, T. D. Do, O. M. Kamel, and M. A. Mossa, "Coyote Optimization Algorithm for Parameters Estimation of Various Models of Solar Cells and PV Modules," in IEEE Access, vol. 8, pp. 111102-111140, 2020, doi: 10.1109/ACCESS.2020.3000770.

V. K. Yadav, S. K. Jha, and B. Kumar, “Comparative study of different variable step size perturb and observe based MPPT,” in 2020 International Conference on Advances in Computing, Communication & Materials (ICACCM), pp. 272–277, 2020.

A. R. Krishnan, S. S. Mohammed, and S. Manafudeen, "Comparison of P&O MPPT Based Solar PV System with Interleaved Boost Converter," 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), 2019, pp. 1370-1376, doi: 10.1109/ICICICT46008.2019.8993209.

S. Bhattacharyya, S. Samanta, and S. Mishra, “Steady output and fast tracking MPPT (SOFT-MPPT) for P&O and InC algorithms,” IEEE Transactions on Sustainable Energy, vol. 12, no. 1, pp. 293–302, 2021.




DOI: https://doi.org/10.18196/jrc.v5i2.20896

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Sarah Abboud, Azeddine Loulijat, Abdellah Boulal, El Alami Semma, Rachid Habachi, Hamid Chojaa, Alfian Ma'arif, Iswanto Suwarno, Mahmoud A. Mossa

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik