Alginate-Based Edible Coatings Enriched with Cinnamon Essential Oil Extend Storability and Maintain the Quality of Strawberries under Tropical Condition

Putri Wahyuni Siburian, Moh. Affan Fajar Falah, Jumeri Mangunwikarta

Abstract


Strawberries are often transported and sold without temperature control, which causes huge losses due to rapid decay and quality deterioration. In this study, the effectiveness of edible coatings using alginate and enriched with an antibacterial agent (cinnamaldehyde from Cinnamomum burmannii essential oil), to maintain the quality and shelf life of strawberry was examined. Alginate coatings were prepared by dissolving 2%(w/v) sodium alginate, 0.5%(v/v) glycerol, 0.1%(w/v) CMC, and 0.5% (w/v) stearic acid, while antimicrobial agent was prepared by homogenizing 0.5%(v/v) cinnamon essential oil and 0.2%(v/v) Tween 20. Physicochemical and biochemical attributes [weight loss, firmness, color (L*, a*, b*), soluble solids content, vitamin C loss, acidity level, odor, total yeast and molds, and total mesophilic microorganisms were analyzed during storage under tropical conditions at 27±2°C. Statistical analysis was performed using ANOVA followed by a Tukey test. The inhibitory activity of antimicrobial agent was evaluated using the disc diffusion method. An alginate-based coatings enriched with Cinnamomum burmannii essential oil (AL+CBEO) was effective in maintaining physicochemical quality attributes and reducing the number of spoilage microorganisms, while alginate coatings alone (AL) found to be optimal for vitamin C loss prevention and additionally exhibited a more desirable odor. Overall, strawberry stored under tropical conditions appeared to be better preserved by alginate-based coatings enriched with cinnamon essential oil. 


Keywords


Antimicrobial agent; Edible coatings; Quality attributes; Strawberry; Tropics

References


Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils - A review. In Food and Chemical Toxicology (Vol. 46, Issue 2, pp. 446–475). https://doi.org/10.1016/j.fct.2007.09.106

Bhaskara Reddy, M. V., Belkacemi, K., Corcuff, R., Castaigne, F., & Arul, J. (2000). Effect of pre-harvest chitosan sprays on post-harvest infection by Botrytis cinerea quality of strawberry fruit. In Postharvest Biology and Technology (Vol. 20, Issue 1, pp. 39–51). https://doi.org/10.1016/S0925-5214(00)00108-3

Calo, J. R., Crandall, P. G., O’Bryan, C. A., & Ricke, S. C. (2015). Essential oils as antimicrobials in food systems - A review. Food Control, 54, 111–119. https://doi.org/10.1016/j.foodcont.2014.12.040

Chao, S. C., Young, D. G., & Oberg, C. J. (2000). Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. Journal of Essential Oil Research, 12(5), 639–649. https://doi.org/10.1080/10412905.2000.9712177

Chiumarelli, M., & Hubinger, M. D. (2014). Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocolloids, 38, 20–27. https://doi.org/10.1016/j.foodhyd.2013.11.013

Cian, R. E., Fajardo, M. A., Alaiz, M., Vioque, J., González, R. J., & Drago, S. R. (2014). Chemical composition, nutritional and antioxidant properties of the red edible seaweed Porphyra columbina. International Journal of Food Sciences and Nutrition, 65(3), 299–305. https://doi.org/10.3109/09637486.2013.854746

Del-Valle, V., Hernández-Muñoz, P., Guarda, A., & Galotto, M. J. (2005). Development of a cactus-mucilage edible coating (Opuntia ficus indica) and its application to extend strawberry (Fragaria ananassa) shelf-life. Food Chemistry, 91(4), 751–756. https://doi.org/10.1016/j.foodchem.2004.07.002

Dong, F., & Wang, X. (2017). Effects of carboxymethyl cellulose incorporated with garlic essential oil composite coatings for improving quality of strawberries. International Journal of Biological Macromolecules, 104, 821–826. https://doi.org/10.1016/j.ijbiomac.2017.06.091

Duan, J., Wu, R., Strik, B. C., & Zhao, Y. (2011). Effect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions. Postharvest Biology and Technology, 59(1), 71–79. https://doi.org/10.1016/j.postharvbio.2010.08.006

Espitia, P. J. P., Du, W. X., Avena-Bustillos, R. de J., Soares, N. de F. F., & McHugh, T. H. (2014). Edible films from pectin: Physical-mechanical and antimicrobial properties - A review. In Food Hydrocolloids (Vol. 35, pp. 287–296). https://doi.org/10.1016/j.foodhyd.2013.06.005

Fagundes, C., Moraes, K., Pérez-Gago, M. B., Palou, L., Maraschin, M., & Monteiro, A. R. (2015). Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes. Postharvest Biology and Technology, 109, 73–81. https://doi.org/10.1016/j.postharvbio.2015.05.017

Fan, Y., Xu, Y., Wang, D., Zhang, L., Sun, J., Sun, L., & Zhang, B. (2009). Postharvest Biology and Technology Effect of alginate coating combined with yeast antagonist on strawberry ( Fragaria × ananassa ) preservation quality. 53, 84–90. https://doi.org/10.1016/j.postharvbio.2009.03.002

Gol, N. B., Patel, P. R., & Rao, T. V. R. (2013). Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biology and Technology, 85, 185–195. https://doi.org/10.1016/j.postharvbio.2013.06.008

Guerreiro, A. C., Gago, C. M. L., Faleiro, M. L., Miguel, M. G. C., & Antunes, M. D. C. (2015). The use of polysaccharide-based edible coatings enriched with essential oils to improve shelf-life of strawberries. Postharvest Biology and Technology, 110, 51–60. https://doi.org/10.1016/j.postharvbio.2015.06.019

Han, Y., Yu, M., & Wang, L. (2017). Physical and antimicrobial properties of sodium alginate/carboxymethyl cellulose films incorporated with cinnamon essential oil. Food Packaging and Shelf Life, October 2016, 1–8. https://doi.org/10.1016/j.fpsl.2017.11.001

Helander, I. M., Alakomi, H.-L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E. J., Gorris, L. G. M., & von Wright, A. (1998). Characterization of the Action of Selected Essential Oil Components on Gram-Negative Bacteria. Journal of Agricultural and Food Chemistry, 46(9), 3590–3595. https://doi.org/10.1021/jf980154m

Hernández-Muñoz, P., Almenar, E., Valle, V. Del, Velez, D., & Gavara, R. (2008). Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria × ananassa) quality during refrigerated storage. Food Chemistry, 110(2), 428–435. https://doi.org/10.1016/j.foodchem.2008.02.020

Hunter Laboratories. (2012). Measuring Color using Hunter L, a, b versus CIE 1976 L*a*b*. Hunter Lab, 4. https://doi.org/10.1128/AEM.02997-13

Martinez-Ferrer, M., Harper, C., Perez-Munoz, F., & Chaparro, M. (2002). Modified atmosphere packaging of minimally processed mango and pineapple fruits. Journal of Food Science, 67(9), 3365–3371. https://doi.org/10.1016/j.postharvbio.2013.06.019

Martiñon, M. E., Moreira, R. G., Castell-Perez, M. E., & Gomes, C. (2014). Development of a multilayered antimicrobial edible coating for shelf-life extension of fresh-cut cantaloupe (Cucumis melo L.) stored at 4 °C. LWT - Food Science and Technology, 56(2), 341–350. https://doi.org/10.1016/j.lwt.2013.11.043

Matan, N., Rimkeeree, H., Mawson, A. J., Chompreeda, P., Haruthaithanasan, V., & Parker, M. (2006). Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. International Journal of Food Microbiology, 107(2), 180–185. https://doi.org/10.1016/j.ijfoodmicro.2005.07.007

Maturin, L & Peeler, J. T. (2001). Bacteriological Analytical Manual: Aerobic Plate Count. U.S. Food and Drug Administration.

Nair, M. S., Saxena, A., & Kaur, C. (2020). Effect of chitosan and alginate based coatings enriched with pomegranate peel extract to extend the postharvest quality of guava ( Psidium guajava L .) E ff ect of chitosan and alginate based coatings enriched with pomegranate peel extract to extend the postharvest quality of guava ( Psidium guajava L .). Food Chemistry, 240(July 2017), 245–252. https://doi.org/10.1016/j.foodchem.2017.07.122

Nazoori, F., Poraziz, S., Mirdehghan, S. H., Esmailizadeh, M., & Zamanibahramabadi, E. (2020). Improving Shelf Life of Strawberry Through Application of Sodium Alginate and Ascorbic Acid Coatings Introduction . International Journal of Horticultural Science and Technology, 7(3), 279–293. https://doi.org/10.22059/ijhst.2020.297134.341

Pelayo, C., Ebeler, S. E., & Kader, A. A. (2003). Postharvest life and flavor quality of three strawberry cultivars kept at 5°C in air or air+20 kPa CO2. Postharvest Biology and Technology, 27(2), 171–183. https://doi.org/10.1016/S0925-5214(02)00059-5

Qin, X., Xiao, H., Cheng, X., Zhou, H., & Si, L. (2017). Hanseniaspora uvarum prolongs shelf life of strawberry via volatile production. Food Microbiology, 63, 205–212. https://doi.org/10.1016/j.fm.2016.11.005

Raeisi, M., Tajik, H., Yarahmadi, A., & Sanginabadi, S. (2015). Antimicrobial Effect of Cinnamon Essential Oil Against Escherichia Coli and Staphylococcus aureus Antimicrobial Effect of Cinnamon Essential Oil Against Escherichia Coli and Staphylococcus aureus. January 2016. https://doi.org/10.17795/jhealthscope-21808

Remuñán-López, C., & Bodmeier, R. (1997). Mechanical, water uptake and permeability properties of crosslinked chitosan glutamate and alginate films. Journal of Controlled Release, 44(2–3), 215–225. https://doi.org/10.1016/S0168-3659(96)01525-8

Romanazzi, G. (2010). Chitosan Treatment for the Control of Postharvest Decay of Table Grapes, Strawberries and Sweet Cherries. Fresh Produce, 4(1), 111–115.

Seow, Y. X., Yeo, C. R., Chung, H. L., & Yuk, H.-G. (2014). Plant Essential Oils as Active Antimicrobial Agents. Critical Reviews in Food Science and Nutrition, 54(5), 625–644. https://doi.org/10.1080/10408398.2011.599504

Sogvar, O. B., Koushesh Saba, M., & Emamifar, A. (2016). Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biology and Technology, 114, 29–35. https://doi.org/10.1016/j.postharvbio.2015.11.019

Tavassoli-Kafrani, E., Shekarchizadeh, H., & Masoudpour-Behabadi, M. (2016). Development of edible films and coatings from alginates and carrageenans. In Carbohydrate Polymers (Vol. 137, pp. 360–374). https://doi.org/10.1016/j.carbpol.2015.10.074

Tharanathan, R. N., & Kittur, F. S. (2003). Chitin - The Undisputed Biomolecule of Great Potential. In Critical Reviews in Food Science and Nutrition (Vol. 43, Issue 1, pp. 61–87). https://doi.org/10.1080/10408690390826455

Valero, D., Díaz-Mula, H. M., Zapata, P. J., Guillén, F., Martínez-Romero, D., Castillo, S., & Serrano, M. (2013). Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biology and Technology, 77, 1–6. https://doi.org/10.1016/j.postharvbio.2012.10.011

Velickova, E., Winkelhausen, E., Kuzmanova, S., Alves, V. D., & Moldão-Martins, M. (2013). Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT - Food Science and Technology, 52(2), 80–92. https://doi.org/10.1016/j.lwt.2013.02.004

Vieira, J. M., Flores-López, M. L., de Rodríguez, D. J., Sousa, M. C., Vicente, A. A., & Martins, J. T. (2016). Effect of chitosan-Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biology and Technology, 116, 88–97. https://doi.org/10.1016/j.postharvbio.2016.01.011

Vu, C. H. T., & Won, K. (2013). Novel water-resistant UV-activated oxygen indicator for intelligent food packaging. Food Chemistry, 140(1–2), 52–56. https://doi.org/10.1016/j.foodchem.2013.02.056

Vu, K. D., Hollingsworth, R. G., Leroux, E., Salmieri, S., & Lacroix, M. (2011). Development of edible bioactive coating based on modified chitosan for increasing the shelf life of strawberries. Food Research International, 44(1), 198–203. https://doi.org/10.1016/j.foodres.2010.10.037

Zactiti, E. M., & Kieckbusch, T. G. (2006). Potassium sorbate permeability in biodegradable alginate films: Effect of the antimicrobial agent concentration and crosslinking degree. Journal of Food Engineering, 77(3), 462–467. https://doi.org/10.1016/j.jfoodeng.2005.07.015

Zhang, Y., Ma, Q., Critzer, F., Davidson, P. M., & Zhong, Q. (2015). Effect of alginate coatings with cinnamon bark oil and soybean oil on quality and microbiological safety of cantaloupe. International Journal of Food Microbiology, 215, 25–30. https://doi.org/10.1016/j.ijfoodmicro.2015.08.014




DOI: https://doi.org/10.18196/pt.v9i1.10368

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Putri Wahyuni Siburian

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





 

Editorial Office
Planta Tropika
Department of Agrotechnology, Faculty of Agriculture, Universitas Muhammadiyah Yogyakarta
Jl. Brawijaya, Tamantirto, Kasihan, Bantul, D.I. Yogyakarta, Indonesia
Phone: +62 274 387656, Ext.: 224 / +62 81329320575
Email: plantatropika@umy.ac.id
E-ISSN: 2528-7079
p-ISSN: 0216-499X

 

Creative Commons License
Planta Tropika is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.