Analysis of Soil Penetration Resistance in Coffee Plantation Agroecosystems in Bangelan, Malang, East Java

Saniya Reizta Riyanto, Atiqah Aulia Hanuf, Febri Ayu Alista, Alifa Yumna, Soemarno Soemarno

Abstract


Agriculture land shows soil compaction problems due to long-term agricultural cultivation activities. Soil compaction indicator can be seen from the value of soil penetration resistance at different soil depths (0 - 60 cm). This research aimed to determine soil penetration resistance at different coffee plantation ages with different soil depths and to analyze the relationship between soil penetration resistance with soil physical characteristics and coffee productivity. The survey activities include observation of minipits, measuring soil penetration resistance at soil depths of 0-20 cm, 20-40 cm, and 40-60 cm using a hand penetrometer, and soil sampling. The results showed that the soil penetration resistance at each LU and soil depth suggested variation were categorized into moderate and high soil penetration resistance classes (1.34 MPa - 3.35 MPa). Soil characteristics, such as soil aggregate stability, water content, bulk density, porosity, silt content, and clay content, significantly correlate with soil penetration resistance. However, soil penetration resistance has a negative correlation with coffee productivity. The value of soil penetration resistance (at a depth of 0-60 cm) has a significant negative correlation with the average productivity of coffee plantations (r=-0.5936**). Therefore, increased soil penetration resistance decreased root growth, decreasing plant productivity.


Keywords


Coffee plantation; Penetration resistance; Soil depth

Full Text:

PDF

References


Alakukku, L., Weisskopf., Chamen,W.C.T., Tijink, F.G.J., Van Der Linden,J.P., Pires,S., Sommer,C. & Spoor, G. (2003). Prevention strategies for field traffic-induced subsoil compaction: A review. Part I – Machine/soil interactions. Soil Till. Res., 73, 145-160. https://doi.org/10.1016/S0167-1987(03)00107-7

Allmaras, R. R., Kraft, J. M., & Miller, D. E. (1988). Effects of soil compaction and incorporated crop residue on root health. Annual review of phytopathology, 26(1), 219-243. https://doi.org/10.1146/annurev.py.26.090188.001251

Amezketa, E. (1999). Soil aggregate stability: a review. Journal of sustainable agriculture, 14(2-3), 83-151. https://doi.org/10.1300/J064v14n02_08

Andrade, A. D., Faria, R. D. O., Alonso, D. J. C., Ferraz, G. A., Herrera, M. A. D., & Silva, F. M. D. (2018). Spatial variability of soil penetration resistance in coffee growing. Coffee Science, Lavras, 13(3), 341 – 348.

Araujo-Junior,C.F., de Souza Dias Junior,M., Guimarães,P.T.G., & Pires,B.S. (2008). Resistance to soil compaction of an oxisol cultivated with coffee plants under different weed management systems. Rev. Bras. Cienc. Solo, 32(1), 23-32. https://doi.org/10.1590/S0100-06832008000100003

Assouline, S., Tessier, D., & Tavares‐Filho, J. (1997). Effect of compaction on soil physical and hydraulic properties: Experimental results and modeling. Soil Science Society of America Journal, 61(2), 390-398. https://doi.org/10.2136/sssaj1997.03615995006100020005x

Atmadji, E., Priyadi, U. & Achiria, S. (2019). Vietnam and Indonesia coffee trade in four main coffee export destination countries: application of the constant market share model. Jurnal Ilmu Ekonomi Dan Pembangunan 19 (1): 37–46.

Azzuhra, F., Devianti, & Yunus, Y. (2019). Analisis Beberapa Sifat Fisika – Mekanika dan Kinerja Traktor Roda Dua Akibat Pemberian Pupuk Organik dan Kedalaman Prngolahan Tanah Ordo Entisols. Jurnal Ilmiah Mahasiswa Pertanian, 4(1), 598–607. doi.org/10.17969/jimfp.v4i1.10409

(BPS) Badan Pusat Statistik. (2020). Luas dan Produksi Kopi Robusta Rakyat Menurut Kecamatan Di Kabupaten Malang, 2016-2018. https://malangkab.bps.go.id/

Bartzen, B. T., Hoelscher, G. L., Ribeiro, L. L. O., & Seidel, E. P. (2019). How the Soil Resistance to Penetration Affects the Development of Agricultural Crops? Journal of Experimental Agriculture International.30(5): 1–17. 10.9734/JEAI/2019/46589

Bengough, A. G., & Mullins, C. E. (1990). Mechanical impedance to root growth: a review of experimental techniques and root growth responses. Journal of soil science, 41(3), 341-358. https://doi.org/10.1111/j.1365-2389.1990.tb00070.x

Bengough, A. E., Mckenzie, B. M., Hallet, P. D., & Valentine, T. A. (2011). Root elongation, water stress, and mechanical impedance: A review of limiting stress and beneficial root tip trails. Journal of Experimental Botany, 62(1), 59-68. https://doi.org/10.1093/jxb/erq350

Bergamin, A. C., A. C. T. Vitorino, J. C. Franchini, C. M. A. D. Souza, & F. R. D. Souza. (2010). Induced Compaction of a Rhodic Acrustox as Related to Maize Root Growth. Revista Brasileira de Ciência do Solo. 34 (3): 681-691. https://doi.org/10.1590/S0100-06832010000300009

Beutler, A.N.; Centurion, J.F.; Silva, A.P.; Roque, C.G. & Ferraz, M.V. (2004). Compactação do solo e intervalo hídrico ótimo na produtividade de arroz de sequeiro. Pesq. Agropec. Bras., 39:557-580. https://doi.org/10.1590/S0100-204X2004000600009

Brady, N.C.; & Weill, R. C. (2009). Elements of the nature and properties of soils. 3rd. ed. New York: Prentice Hall.

Braun H, Henrique Zonta J, Soares J, Fialho E & Paulucio D. (2009). Desenvolvimento inicial do café conillon (coffea canephora pierre) em solos de diferentes texturas com mudas produzidas en diferentes substratos. Idesia 27(3): 35-40. http://dx.doi.org/10.4067/S0718-34292009000300006

Cannell, R.Q. (1977). Soil aeration and compaction in relation to root growth and soil management. Appl. Biol., 2: 1–86.

Carducci,C.E., Oliveira, G.C., Curi,N., Rossoni,D.F., Costa,A.L., & Heck, R.J. (2014). Spatial variability of pores in oxidic latosol under a conservation management system with different gypsum doses. Ciência e Agrotecnologia, 38, 445-460. https://doi.org/10.1590/S1413-70542014000500004

Carduccia, C.E., Oliveira, G.C., Curi, N., Heck, R.J., Rossoni, D.F., de Carvalho, T.S., Costa, A.L. (2015). Gypsum effects on the spatial distribution of coffee roots and the pores system in oxidic Brazilian Latosol. Soil and Tillage Research, 145, 171-180. https://doi.org/10.1016/j.still.2014.09.015

Carmi, A., Hesketh, J. D., Enos, W. T. & Peters, D.B. (1983). Interrelationships between shoot growth and photosynthesis as affected by root growth restriction. Photosynthetica, 17, 240–245.

Carter, M. R. (1990). Relative measures of soil bulk density to characterize compaction in tillage studies on fine sandy loams. Canadian Journal of Soil Science, 70(3), 425-433. https://doi.org/10.4141/cjss90-042

Catania, P., Badalucco, L., Laudicina, V. A., & Vallone, M. (2018). Effects of tilling methods on soil penetration resistance, organic carbon and water stable aggregates in a vineyard of semiarid Mediterranean environment. Environmental Earth Sciences, 77(9), 348. https://doi.org/10.1007/s12665-018-7520-520-5

Chancellor, W.J. (1971). Effects of compaction on soil strength. Compact. Agric. Soils ASAE., 30, 888-892.

Chen, G., & Weil, R. R. (2010). Penetration of cover crop roots through compacted soils. Plant and Soil, 331(1-2), 31-43. https://doi.org/10.1007/s11104-009-0223-7

Clark, L. J., Whalley, W. R., & Barraclough, P. B. (2003). How do roots penetrate strong soil?. In Roots: The Dynamic Interface Between Plants and the Earth (pp. 93-104). Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2923-9_10

Colombi, T., & Walter, A. (2016). Root Responses of Triticale and Soybean to Soil Compaction in the Field are Reproducible Under Controlled Conditions. Functional Plant Biology, 43, 114-128. https://doi.org/10.1071/FP15194

DaMatta,F.M., Rochi,C.P., Maestri, M., & Barros,R.S. (2007). Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology, 19, 485-510. https://doi.org/10.1590/S1677-04202007000400014

Day, S. D., Bassuk, N. L., & Van Es, H. (1995). Effects of four compaction remediation methods for landscape trees on soil aeration, mechanical impedance and tree establishment. Journal of Environmental Horticulture,13(2), 64-71. https://doi.org/10.24266/0738-2898-13.2.64

dos Santos, G. A., Junior, M. D. S. D., Guimarães, P. T. G., Junior, C. F. A., & Moreira, P. S. A. S. A. (2009). Weed management and its influence on the load bearing capacity of red-yellow latosol under the crown projection, in coffee culture. Coffee Science, 4(2), 165-177.

Ehlers, W., Köpke, U., Hesse, F., & Böhm, W. (1983). Penetration resistance and root growth of oats in tilled and untilled loess soil. Soil and Tillage Research, 3(3), 261-275. https://doi.org/10.1016/0167-1987(83)90027-2

Fernandes, A.L.T., Partelli, F.L., Bonomo, R., Dolynski, A. (2012). A moderna cafeicultura dos cerrados brasileiros. Pesquisa Agropecuária Tropical, (42), 231-240.

Gilman, E. F., Leone, I. A., & Flower, F. B. (1987). Effect of soil compaction and oxygen content on vertical and horizontal root distribution. Journal of Environmental Horticulture, 5(1), 33-36. https://doi.org/10.24266/0738-2898-5.1.33

Girardello, V. C., Amado, T. J. C., Santi, A. L., Cherubin, M. R., Kunz, J., & Teixeira, T. G. (2014). Resistência à penetração, eficiência de escarificadores mecânicos e produtividade da soja em Latossolo argiloso manejado sob plantio direto de longa duração. Revista Brasileira de Ciência do Solo, 38(4), 1234-1244. https://doi.org/10.1590/S0100-06832014000400020

Hansel, C.M., Fendorf, S., Jardine, P.M., & C. A. Francis, C.A. (2008). Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Applied and Environmental Microbiology, 74 (5): 1620–1633. https://doi.org/10.1128/AEM.01787-07

Haridjaja, O., Hidayat, Y., & Maryamah, L. S. (2010). Pengaruh Bobot Isi Tanah Terhadap Sifat Fisik Tanah Dan Perkecambahan Benih Kacang Tanah Dan Kedelai. Jurnal Ilmu Pertanian Indonesia, 15(3), 147–152.

Hundera, K., Aerts, R., Fontaine, A., Van Mechelen, M., Gijbels, P., Honnay, O., & Muys, B. (2013). Effects of coffee management intensity on composition, structure, and regeneration status of Ethiopian moist evergreen afromontane forests. Environmental management, 51(3), 801-809. https://doi.org/10.1007/s00267-012-9976-5

Ishaq, M., Ibrahim, M., Hassan, A., Saeed, M., & Lal, R. (2001). Subsoil compaction effects on crops in Punjab, Pakistan: I. Soil physical properties and crop yield. Soil Till. Res, 60(3/4), 153-161. https://doi.org/10.1016/S0167-1987(00)00189-6

Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5, 425-442. https://doi.org/10.2136/sssabookser5.1.2ed.c17

Kirby, J. M., & Bengough, A. G. (2002). Influence of soil strength on root growth: experiments and analysis using a critical‐state model. European Journal of Soil Science, 53(1), 119-127. https://doi.org/10.1046/j.1365-2389.2002.00429.x

Kooistra, M.J. & Trovey,N.K. (1994). Effects of Compaction on Soil Microstructure. In: Soil Compaction in Crop Production, Soane, B.D. and C. Van Ouwerberk (Eds.), Elsevier, New York. https://doi.org/10.1016/B978-0-444-88286-8.50013-1

Kozlowski, T.T. (1999). Soil compaction and growth of woody plants. Scand. J. For. Res., 14, 596-619. https://doi.org/10.1080/02827589908540825

Kufa, T., & Burkhardt, J. (2013). Studies on Root Growth of Coffea arabica Populations and Its Implication for Sustainable Management of Natural Forests. Journal of Agricultural and Crop Research, 1(1), 1-10.

Landsberg, J. D., Miller, R. E., Anderson, H. W., & Tepp, J.S. (2003). Bulk Density and Soil Resistance to Penetration as Affected by Commercial Thinning in Northeastern Washington. United States Department of Agriculture. https://doi.org/10.2737/PNW-RP-551.

Lipiec, J., & Hatano, R. (2003). Quantification of compaction effects on soil physical properties and crop growth. Geoderma, 116(1-2), 107-136. https://doi.org/10.1016/S0016-7061(03)00097-1

Martins, P. C. C., Dias Junior, M. D. S., Andrade, M. L. D. C., & Guimarães, P. T. G. (2012). Compaction caused by mechanized operations in a Red-Yellow Latosol cultivated with coffee over time. Ciência e Agrotecnologia, 36(4), 391-398. https://doi.org/10.1590/S1413-70542012000400002

Masaka, J., & Khumbula, N. (2007). The effect of soil compaction levels on germination and biometric characteristics of coffee (Coffee arabica) seedlings in the nursery. International Journal of Agricultural Research, 2(7), 581-589.

Masulili, A., Suryantini, & Irianti, A.T.P. (2014). Pemanfaatan Limbah Padi Dan Biomasa Tumbuhan Liar Cromolaena Odorata Untuk Meningkatkan Beberapa Sifat Tanah Sulfat Masam Kalimantan Barat. Buana Sains, 14(2), 7-18. https://doi.org/10.33366/bs.v14i2.335

Mechram, S., Idkham,M., & Aulia, T. A. (2013). Studi Sifat Fisik-Mekanik Tanah pada Lahan Sawah yang Tidak Ditanami pada Musim Kemarau. Jurnal Teknologi Pertanian Andalas, 17(1), 58–64.

Miranda, E. E. V., Dias Junior, M. S., Guimarães, P. T. G., Pinto, J. A. O., Araujo Junior, C. F., & Lasmar Junior, E. (2003). Efeito do manejo e do tráfego nos modelos de sustentabilidade da estrutura de um Latossolo Vermelho cultivado com cafeeiros. Ciência e Agrotecnologia, Lavras, Edição Especial, 1506-1515.

Nzeyimana, I., Hartemink, A. E., Ritsema, C., Stroosnijder, L., Lwanga, E. H., & Geissen, V. (2017). Mulching as a strategy to improve soil properties and reduce soil erodibility in coffee farming systems of Rwanda. Catena, 149, 43-51. https://doi.org/10.1016/j.catena.2016.08.034

Nzeyimana, I., Hartemink,A.E., & deGraaff, J. (2013). Coffee farming and soil management in Rwanda. Outlook on Agriculture, 42, 47-52. https://doi.org/10.5367/oa.2013.0118

Oduma, O., Nnadi, D. C., Agu, C. S., & Igwe, J. E. (2017). Determination of the Effect of Tillage on Soil Resistance to Penetration. A Study of South-East Agricultural Soils. Amer. Jour. of Engineering Res., 6 (7), 1-5.

Oliveira A, Oliveira A, Leonardo P, Cruz S & Silva D. (2009). Yield of gherkin in response to doses of bovine manure. Revista Horticultura Brasileira 27(1): 100-102. https://doi.org/10.1590/S0102-05362009000100020

Palma, M. A. Z., C. E. S. Volpato, F. C. D. Silva, P. D. Souza, & J. A. Silva. (2013). Soil Penetration Resistance in Coffee Plantations Cultivated with Mechanized and Manual Systems. Coffee Science. 8 (3): 364-370.

Panayiotopoulos, K. P., Papadopoulou, C. P., & Hatjiioannidou, A. (1994). Compaction and Penetration Resistance of an Alfisol and Entisol and Their Influence on Root Growth of Maize Seedlings. Soil and Tillage Research, 31, 323-337.

Place, G., Bowman, D., Burton, M., & Rufty, T. (2008). Root penetration through a high bulk density soil layer: differential response of a crop and weed species. Plant and Soil, 307(1-2), 179. https://doi.org/10.1007/s11104-008-9594-4

Prasetyo, A., Listyorini, E., & Utomo, W. H. (2014). Hubungan Sifat Fisik Tanah, Perakaran dan Hasil Ubi Kayu Tahun Kedua pada Alfisol Jatikerto Akibat Pemberian Pupuk Organik dan Anorganik (NPK). Jurnal Tanah dan Sumberdaya Lahan, 1(1), 27-37.

Rahardjo, P. (2017). Berkebun Kopi. Penerbit Penebar Swadaya, Jakarta, 3 hal.

Refliaty & Endriani. (2018). Kepadatan Tanah Pasca Tambang Batu Bara Setelah di Revegetasi. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 2(2), 107-114. https://doi.org/10.22437/jiituj.v2i2.5981

Richard, G., Cousin,I., Sillon,J.F., Bruand,A. & Guerif,J. (2001). Effect of compaction on the porosity of a salty soil: Influence on unsaturated hydraulic properties. Eur. J. Soil Sci., 52, 49-58. https://doi.org/10.1046/j.1365-2389.2001.00357.x

Serosero, R. H., Suryani, & Rina. (2016). Karakteristik Habitat dan Pola Pertumbuhan Kepiting Kelapa (Birgus latro) di Pulau Ternate dan Kabupaten Halmahera Barat Provinsi Maluku Utara. Jurnal Ilmu-Ilmu Perairan, Pesisir, dan Perikanan, 5(2), 48-56. https://doi.org/10.13170/depik.5.2.4350

Shierlaw, J., & Alston, A. M. (1984). Effect of soil compaction on root growth and uptake of phosphorus. Plant and soil, 77(1), 15-28. https://doi.org/10.1007/BF02182808.

Silalahi, F.A. & Nelvia. (2017). Sifat Fisik Tanah pada Berbagai Jarak dari Saluran Aplikasi Limbah Cair Pabrik Kelapa Sawit. Jurnal Dinamika Pertanian, 33(1), 85-94. https://doi.org/10.25299/dp.2017.vol33(1).3820

Silva, V. R. D., D. J. Reinert, & J. M. Reichert. (2000). Soil Strength as Affected by Combine Wheel Traffic and Two Soil Tillage Systems. Ciência Rural, Santa Maria. 30 (5): 795-801.

Silva,B.M., Oliveira,G.C., Serafim,M.E., Silva ,É.A., Guimarães,P.T.C., Melo,L.B.B., et al.. (2019). Soil moisture associated with least limiting water range, leaf water potential, initial growth and yield of coffee as affected by soil management system. Soil and Tillage Research, 189, 36-43. https://doi.org/10.1016/j.still.2018.12.016

Silva,E.A., Silva,S.H.G., Oliveira,G.C., & Carducci,C.E. (2016). Root spatial distribution in coffee plants of different ages under conservation management system. African Journal of Agricultural Research, 11, 4970-4978. https://doi.org/10.5897/AJAR2016.11356

Siqueira, G. M., Silva, E. F. F., Montenegro, A. A. A., Vidal Vázquez, E., & Paz-Ferreiro, J. (2013). Multifractal Analysis of Vertical Profiles of Soil Penetration Resistance at the Field Scale. Nonlinear Processes in Geophysics, 20, 529-541. https://doi.org/10.5194/npg-20-529-2013

Sitania, S. Y., Avenzora, R., & Sunarminto, T. (2018). Kajian Dampak Injakan Wisatawan di Kawasan Wisata Ciwidey. Media Konservasi, 23(2), 114-121.

Suprayogo, D., Widianto, Purnomosidi, P., Widodo, R. H., Rusiana, F., Aini, Z. Z., Khasanah, N., & Kusuma, Z. (2004). Degradasi Sifat Fisik Tanah Sebagai Akibat Alih Guna Lahan Hutan Menjadi Sistem Kopi Monokultur: Kajian Perubahan Makroiporositas Tanah. Jurnal Agrivita, 26(1), 60-68.

Tarigan, E. S.Br., Guchi, H., & Marbun, P. (2015). Evaluasi Status Bahan Organik Dan Sifat Fisik Tanah (Bulk Density, Tekstur, Suhu Tanah) Pada Lahan Tanaman Kopi (Coffea SP.) Di Beberapa Kecamatan Kabupaten Dairi. Jurnal Online Agroekoteknologi, 3(1), 246-256. (in Indonesian).

Taylor, H., & Brar, G. S. (1991). Effect of soil compaction on root development. Soil and Tillage Research, 19(2-3), 111-119. https://doi.org/10.1016/0167-1987(91)90080-H

Tracy, S. R., Black, C. R., Roberts, J. A., & Mooney, S. J. (2011). Soil compaction: a review of past and present techniques for investigating effects on root growth. Journal of the Science of Food and Agriculture, 91(9), 1528-1537. https://doi.org/10.1002/jsfa.4424

Unger, P. W., & Kaspar, T. C. (1994). Soil compaction and root growth: a review. Agronomy Journal, 86(5), 759-766. https://doi.org/10.2134/agronj1994.00021962008600050004x

USDA. (1993). Soil Survey Manual. Soil Survey Division Staff, Washington DC USA, 139 hal.

Utomo, B.S., Nuraini, Y., dan Widianto. (2015). Kajian Kemantapan Agregat Tanah pada Pemberian Beberapa Jenis Bahan Organik di Perkebunan Kopi Robusta. Jurnal Tanah dan Sumberdaya Lahan, 2(1), 111-118.

Wahyunie, E.D., Baskoro, D. P. T., & Sofyan, M. (2012). Kemampuan Retensi Air dan Ketahanan Penetrasi Tanah pada Sistem Olah Tanah Intensif dan Olah Tanah Konservasi. Jurnal Tanah Lingkungan, 14(2), 73-78. (in Indonesian). https://doi.org/10.29244/jitl.14.2.73-78

Yadessa, A., Burkhardt, J., Denich, M., Woldemariam, T., Bekele, E., & Goldbach, H. (2008). Influence of soil properties on cup quality of wild arabica coffee in coffee forest ecosystem of SW Ethiopia. In 22nd International Conference on Coffee Science (ASIC). Campinas, Brazil (pp. 14-19).

Zhang, Y., Zhao, W., & Fu, L. (2017). Soil Macropore Characteristics Following Conversion of Native Desert Soils to Irrigated Croplands in a Desert-Oasis Ecotone, Northwest China. Soil and Tillage Research, 168, 176-186. https://doi.org/10.1016/j.still.2017.01.004




DOI: https://doi.org/10.18196/pt.v10i2.11085

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Saniya Reizta Riyanto, Atiqah Aulia Hanuf, Febri Ayu Alista, Alifa Yumna, Soemarno

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.





 

Editorial Office
Planta Tropika
Department of Agrotechnology, Faculty of Agriculture, Universitas Muhammadiyah Yogyakarta
Jl. Brawijaya, Tamantirto, Kasihan, Bantul, D.I. Yogyakarta, Indonesia
Phone: +62 274 387656, Ext.: 224 / +62 81329320575
Email: plantatropika@umy.ac.id
E-ISSN: 2528-7079
p-ISSN: 0216-499X

 

Creative Commons License
Planta Tropika is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.