Secondary Metabolites Application of Two Pseudomonas fluorescens isolates and Two Trichoderma Harzianum Isolates in Combination Against Postharvest Anthracnose in Papaya
DOI:
https://doi.org/10.18196/pt.v11i2.14594Keywords:
Combined application, Fruit quality, Organic control, Postharvest diseaseAbstract
The occurrence of papaya anthracnose is a significant post-harvest ailment, necessitating the effective disease management. The aim was to determine the ability of secondary metabolites combination of Pseudomonas fluorescens and Trichoderma harzianum isolates against the disease. A completely randomized design was used for in vitro experiments and a randomized block design for in vivo experiments. The treatments consisted of P. fluorescens P60 and T. harzianum T10, P. fluorescens P60 and T. harzianum T213, P. fluorescens P32 and T. harzianum T10, P. fluorescens P32 and T. harzianum T213 secondary metabolites and fungicides (a.i. maneb). The observed variables included the pathosystem component and papaya character and organoleptic test. The in vitro test results showed that P. fluorescens P60 and T. harzianum T10 and P. fluorescens P60 and T. harzianum T213 secondary metabolites inhibited the pathogen growth by 48.1075 and 43.4625%, respectively. The secondary metabolites of P. fluorescens P60 and T. harzianum T10 in vivo test results could delay the germination time by 12.63% and reduce the invasion area by 44.29%. All secondary metabolites had no effect on sugar content, hardness and sensory test. The combined secondary metabolites of P. fluorescens and T. harzianum are safe and does not affect papaya fruit quality.
References
Abacı, Z.T. & Asma, B.M. (2013). Examination of some physiological and biochemical changes based on ripening in fruits of different types of apricots. Journal of Plant Sciences, 1(1), 6-10.
Aini, F.N., Sukamto, S., Wahyuni, D., Suhesti, R.G., & Ayunin, Q. (2013). Growth Inhibition of Colletotrichum gloeosporioides by Trichoderma harzianum, Trichoderma koningii, Bacillus subtilis and Pseudomonas fluorescens. Pelita Perkebunan, 29(1), 44-52. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v29i1.190
Alberida, H., Eliza, & Lova, R.N. (2014). Pengaruh minyak atsiri terhadap pertumbuhan Colletotrichum gloeosporioides (Penz.) Sacc. penyebab penyakit antraknosa buah pepaya (Carica papaya L.) secara in vitro. Sainstek: Jurnal Sains dan Teknologi, 6(1): 57-64.
Ali, S.R.M., Fradi, A.J., & Al-araji, A.M. (2017). Effect of some physical factors on growth of five fungal species. European Academic Research, V(2), 1069-1078.
Aravind, G., Bhowmik, D., Duraivel, S., & Harish, G. (2013). Traditional and medicinal uses of Carica papaya. Journal of Medicinal Plants Studies, 1(1), 7-15. https://doi.org/10.22271/plants
Braun, H., Woitsch, L., Hetzer, B., Geisen, R., Zange, B., & Schmidt-Heydt, M. (2018). Trichoderma harzianum: Inhibition of mycotoxin producing fungi and toxin biosynthesis. International Journal of Food Microbiology, 280, 10-16. http://doi.org/10.1016/j.ijfoodmicro.2018.04.021
Bravdo, B.A. (1968). Decrease in net photosynthesis caused by respiration. Plant Physiol, 43(4), 479-83. http://doi.org/10.1104/pp.43.4.479
Damanik, S., Pinem, M.I., & Pengestiningsi, Y. (2013). Uji efikasi agensia hayati terhadap penyakit hawar daun bakteri (Xanthomonas oryzae pv. oryzae) pada beberapa varietas padi sawah (Oryza sativa). Jurnal Online Agroekoteknologi, 1(4), 1402-1412.
Datta, H.S. & Bora, S.S. (2019). Physiological approaches for regulation of fruit ripening: A review. International Journal of Chemical Studies, 7(3), 4587-4597.
Fabi, J.P., Broetto, S.G., da Silva, S.L.G.L., Zhong, S., Lajolo, F.M., & do Nascimento, J.R.O. (2014). Analysis of papaya cell wall-related genes during fruit ripening indicates a central role of polygalacturonases during pulp softening. PLoS ONE, 9(8), e105685. http://doi.org/10.1371/journal.pone.0105685
Feliziani, E. & Romanazzi, G. (2013). Preharvest application of synthetic fungicides and alternative treatments to control postharvest decay of fruit. Stewart Postharvest Review, 9(3): 1-6. http://doi.org/10.2212/spr.2013.3.4
Garcia-Benitez, C., Melgarejo, P., & De Cal, A. (2017). Fruit maturity and post-harvest environmental conditions influence the pre-penetration stages of Monilinia infections in peaches. Int J Food Microbiol, 241, 117-122. http://doi.org/10.1016/j.ijfoodmicro.2016.09.010
Gayosso, L., Yahia, E.M., Martínez-Téllez, M.A., & Aguilar, G.A.G. (2010). Effect of maturity stage of papaya maradol on physiological and biochemical parameters. American Journal of Agricultural and Biological Science, 5(2), 194-203. https://doi.org/10.3844/ajabssp.2010.194.203
Han, J.S., Cheng, J.H., Yoon, T.M., Song, J., Rajkarnikar, A., Kim, W.G., Yoo, I.D., Yang, Y.Y., & Suh, J.W. (2012). Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua. Journal of Applied Microbiology, 99(1), 213–221. http://doi.org/10.1111/j.1365-2672.2005.02614.x
Herliyana, E.N., Jamilah, R., Taniwiryono, D., & Firmansyah, M.A. (2013). In-vitro Test of Biological Control by Trichoderma spp. Toward Ganoderma that attacked Sengon. Jurnal Silvikultur Tropika, 4(3), 190–195.
Jayathunge, K.G.L.R., Prasad, H.U.K.C., Fernando, M.D., & Palipane, K.B. (2011). Prolonging the postharvest life of papaya using modified atmosphere packaging. Journal of Agricultural Technology, 7(2), 507-518.
Kadam, V., Bankar, P., Bhosale, A., Shitole, S., Chandankar, S., Wagh, S., Chitale, R., & Kanade, M.B. (2019). Studies on post-harvest fungal pathogens of papaya fruits (Carica papaya L.). Int. J. Curr. Microbiol. App. Sci., 8(7), 2176-2180. http://doi.org/10.20546/ijcmas.2019.807.263
Karabulut, I., Gokbulut, I., Bilenler, T., Sislioglu, K., Ozdemir, I.S., Bahar, B., Çelik, B., & Seyhan, F. (2018). Effect of fruit maturity level on quality, sensory properties and volatile composition of two common apricot (Prunus armeniaca L.) varieties. Journal of Food Science and Technology, 55, 2671–2678. http://doi.org/10.1007/s13197-018-3189-8
Khadivi-Khub, A. (2014). Physiological and genetic factors influencing fruit cracking. Acta Physiologiae Plantarum, 37(1), 1718. http://doi.org/10.1007/s11738-014-1718-2
Khokhar, I., Haider, M.S., Mukhtar, I., & Mushatq, S. (2012). Biological control of Aspergillus niger, the cause of black-rotdisease of Allium cepa L. (onion), by Penicillium species. Journal of Agrobiology, 29(1), 23-28. http://doi.org/10.2478/v10146-012-0003-5
Ministry of Agriculture RI. (2022). Produksi Buah-Buahan di Indonesia, 2015-2019. Indonesian Ministry of Agriculture. https://www.pertanian.go.id/home/?show=page&act=view&id=61
Moreno, J.L., Tran, T., Cantero-Tubilla, B., López-López, K., Lavalle, L.A.B.L., & Dufour, D. (2020). Physicochemical and physiological changes during the ripening of banana (Musaceae) fruit grown in Colombia. International Journal of Food Science + Technology, 56(3), 1171-1183. https://doi.org/10.1111/ijfs.14851
Mukhtar, M.F., Wusa, N.R., Danladi, U.I., & Salisu, N. (2019). Isolation and characterization of fungal species from spoilt fruits in Utako Market, Abuja, Nigeria. Journal of Applied Sciences, 19(1), 15-19. http://doi.org/10.3923/jas.2019.15.19
Özkale, E. (2017). Screening of secondary metabolites and inhibitory activities of native Trichoderma harzianum strains against to various fungi and bacteria. International Journal of Applied Research in Natural Products, 7(1), 1-6.
Paul, P. & Pandey, R. (2014). Role of internal atmosphere on fruit ripening and storability—a review. J Food Sci Technol., 51(7), 1223–1250. http://doi.org/10.1007/s13197-011-0583-x
Peres, N.A.R., Kuramae, E.E., Dias, M.S.C., & De Souza, N.L. (2008). Identification and Characterization of Colletotrichum spp. affecting Fruit after Harvest in Brazil. Journal of Phytopathology, 150(3), 128-134. http://doi.org/10.1046/j.1439-0434.2002.00732.x
Perotti, V.E., Moreno, A.S., & Podestá F.E. (2014). Physiological aspects of fruit ripening: the mitochondrial connection. Mitochondrion, 17, 1-6. http://doi.org/10.1016/j.mito.2014.04.010
Proto, M.R., Biondi, E., Baldo, D., Levoni, M., Filippini, G., Modesto, M., Vito, M.D., Bugli, F., Ratti, C., Minardi, P., & Mattarelli, P. (2022). Essential oils and hydrolates: Potential tools for defense against bacterial plant pathogens. Microorganisms, 10(4), 702. http://doi.org/10.3390/microorganisms10040702
Ragavi, G., Muthamilan, M., Nakkeeran, S., Kumaravadivel, N., Sivakumar, U., & Suganthi, A. (2019). Molecular detection of the causative agent of soft rot (Pectobacterium carotovorum subsp. carotovorum) in banana (Musa sp.). Int. J. Curr. Microbiol. App. Sci., 8(11). 1854-1868. http://doi.org/10.20546/ijcmas.2019.811.218
Rajeswari, P. (2019). Combination of Trichoderma viride and Pseudomonas fluorescens for the enhanced control of Fusarium wilt disease caused by Fusarium oxysporum infecting Arachis hypogaea L. Journal of Applied and Natural Science, 11(1), 138-143. http://doi.org/10.31018/jans.v11i1.1985
Rakhmankulova, Z.F. (2022). Plant respiration and global climatic changes. Russ J Plant Physiol, 69, 109. http://doi.org/10.1134/S1021443722060218
Rangkuti, E.E., Wiyono, S., & Widodo. (2017). Identifikasi Colletotrichum spp. asal tanaman papaya. Jurnal Fitopatologi Indonesia, 13(5), 175–183. http://doi.org/10.14692/jfi.13.5.175
Rani, A., Singh, R., Kumar, P., & Shukla, G. (2017). Pros and cons of fungicides: An overview. International Journal of Engineering Sciences & Research Technology (IJESRT), 6(1): 112-117. http://doi.org/10.5281/zenodo.233295
Rieusset, L., Rey, M., Muller, D., Vacheron, J., Gerin, F., Dubost, A., Comte, G., & Prigent-Combaret, C. (2020). Secondary metabolites from plant-associated Pseudomonas are overproduced in biofilm. Microbial Biotechonology, 13(5), 1562-1580. http://doi.org/10.1111/1751-7915.13598
Rovira, D., Alfaro, C., Martínez, V., & Menjívar. I. (2019). Respiration rate and shelf-life study of Crotalaria longirostrata (chipilín). Journal of Food Measurement and Characterization, 13, 3025–3032. http://doi.org/10.1007/s11694-019-00224-2
Santana, L.F., Inada, A.C., do Espirito Santo, B.L.S., Filiú, W.F.O., Pott, A., Alves, F.M., de Cássia A. Guimarães, R., de Cássia Freitas, K., & Hiane, P.A. (2019). Nutraceutical potential of Carica papaya in metabolic syndrome. Nutrients. 11(7), 1608. http://doi.org/10.3390/nu11071608
Santoso, S.E., Soesanto, L. & Haryanto, T.A.D. (2007). Penekanan hayati penyakit moler pada bawang merah dengan Trichoderma harzianum, Trichoderma koningii, dan Pseudomonas fluorescens P60. Jurnal Hama dan Penyakit Tumbuhan Tropika, 7(1), 53–61.
Sarkar, A.K. (2016). Anthracnose diseases of some common medicinally important fruit plants. Journal of Medicinal Plants Studies, 4(3), 233-236.
Saryoko, A., R. Yuniar, A., & Sujiprihati, S. (2004). Karakterisasi Plasma Nutfah Pepaya di Pusat Kajian Buah-buahan Tropika, IPB. Prosiding Simposium Nasional Peripi. Perhimpunan Ilmu Pemuliaan Indonesia dan Fakultas Pertanian, IPB, 393-401.
Soesanto, L., Soedharmono, Prihatiningsih, N., Manan, A., Iriani, E., & Pramono, J. (2005). Potensi agensia hayati dan nabati dalam mengendalikan penyakit busuk rimpang jahe. Jurnal Hama dan Penyakit Tumbuhan Tropika, 5(1), 50-57. https://doi.org/10.23960/j.hptt.1550-57
Soesanto, L., E. Mugiastuti, & R.F. Rahayuniati. (2010). Kajian mekanisme antagonis Pseudomonas fluorescens P60 terhadap Fusarium oxysporum f.sp. lycopersici pada tanaman tomat in vivo. Jurnal Hama dan Penyakit Tumbuhan Tropika, 10(2): 108–115. https://doi.org/10.23960/j.hptt.210108-115
Soesanto, L., Mugiastuti, E., & Khoeruriza. (2019). Granular formulation test of Pseudomonas fluorescens P60 for controling bacterial wilt (Ralstonia solanacearum) of tomato In Planta. AGRIVITA Journal of Agricultural Science, 41(3), 513–523. http://doi.org/10.17503/agrivita.v41i3.2318
Soesanto, L., Mugiastuti, E., Suyanto, A., & Rahayuniati, R.F. (2020). Application of raw secondary metabolites from two isolates of Trichoderma harzianum against anthracnose on red chili pepper in the field. Jurnal Hama dan Penyakit Tumbuhan Tropika, 20(1), 19-27. http://doi.org/10.23960/j.hptt.12019-27
Sudha, S., Narendrappa, T., & Sivakumar, G. (2021). Management of post-harvest anthracnose disease in mango using promising biocontrol agents. The Pharma Innovation Journal, 10(3), 210-214.
Suketi, K., Poerwanto, R., Sujiprihati, S., Sobir, & Widodo, W.D. (2010). Studi karakter mutu buah pepaya IPB. Jurnal Hortikultura Indonesia, 1(1), 17-26. https://doi.org/10.29244/jhi.1.1.17-26
Syabana, M.A., Saylendra, A., & Ramdhani, D. (2015). Aktivitas anti cendawan ekstrak daun sereh wangi (Cymbopogon nardus L.) terhadap Colletotrichum sp. penyebab penyakit antraknosa pada buah cabai (Capsicum annum L.) secara in vitro dan in vivo. Agrologia, 4(1), 21-27. http://dx.doi.org/10.30598/a.v4i1.220
Talibi, I., Boubaker, H., Boudyach, E.H., & Aoumar, A.A.B. (2014). Alternative methods for the control of postharvest citrus diseases. J Appl Microbiol., 117(1), 1-17. http://doi.org/10.1111/jam.12495
Thambugala, K., Daranagama, D.A., Phillips, A.J.L., Kannangara, S.D., & Promputtha, I. (2020). Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Front Cell Infect Microbiol., 10, 604923. http://doi.org/10.3389/fcimb.2020.604923
Thibaud, F., Courregelongue, M., & Darriet, P. (2020). Contribution of volatile odorous terpenoid compounds to aged cognac spirits aroma in a context of multicomponent odor mixtures. J Agric Food Chem, 68(47), 13310-13318. http://doi.org/10.1021/acs.jafc.9b06656
Tigist, M., Workneh, T.S., & Woldetsadik, K. (2013). Effects of variety on the quality of tomato stored under ambient conditions. J Food Sci Technol., 50(3), 477–486. http://doi.org/10.1007/s13197-011-0378-0
Tonutti, P., Droby, S., & Romanazzi, G. (2016). Alternative approaches to synthetic fungicides to manage postharvest decay of fruit and vegetables: Needs and purposes of a special issue. Postharvest Biology and Technology, 122,1-2. http://doi.org/10.1016/j.postharvbio.2016.09.001
Tripathi, K., Pandey, S., Malik, M., & Kaul, T. (2016). Fruit ripening of climacteric and non climacteric fruit. Journal of Environmental and Applied Bioresearch, 4(1), 27-34.
Tyśkiewicz, R., Nowak, A., Ozimek, E., & Jaroszuk-Ściseł, J. (2022). Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Int J Mol Sci., 23(4), 2329. http://doi.org/10.3390/ijms23042329
Wallace, R.L., Hirkala, D.L., & Nelson, L.M. (2018). Mechanisms of action of three isolates of Pseudomonas fluorescens active against postharvest grey mold decay of apple during commercial storage. Biological Control, 117, 13-20. http://doi.org/10.1016/j.biocontrol.2017.08.019
Wang, Q., Duan, B., Yang, R., Zhao, Y., & Zhang, L. (2015). Screening and identification of chitinolytic Actinomycetes and study on the inhibitory activity against turfgrass root rot disease fungi. Journal of Biosciences and Medicines, 3, 56-65. http://doi.org/10.4236/jbm.2015.33009
Zboralskia, A. & Filion, M. (2020). Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. Computational and Structural Biotechnology Journal, 18, 3539-3554. http://doi.org/10.1016/j.csbj.2020.11.025
Zhang, Q., Li, Y., Xu, F., Zheng, M., Xi, X., Zhang, X., & Han, C. (2017). Optimization of submerged fermentation medium for matrine production by Aspergillus terreus, an endophytic fungus harboring seeds of Sophora flavescens, using response surface methodology. Mycobiology, 45(2), 90-96. http://doi.org/10.5941/MYCO.2017.45.2.90
Zhang, Z.-Q., Chen, T., Li, B.-Q., Qin, G.-Z., & Tian, S.-P. (2021). Molecular basis of pathogenesis of postharvest pathogenic fungi and control strategy in fruits: progress and prospect. Mol Horticulture, 1(1), 2. http://doi.org/10.1186/s43897-021-00004-x
Zin, N.A. & Badaluddin, N.A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2), 168-178. http://doi.org/10.1016/j.aoas.2020.09.003
Downloads
Published
Issue
Section
License
PLANTA TROPIKA is committed to its authors to protect and defend their work and their reputation and takes allegations of infringement, plagiarism, ethical disputes, and fraud very seriously. PLANTA TROPIKA is published under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Authors retain copyright and grant the journal right of first publication (online and print) with the work simultaneously.
LICENSE
1. License to Publish
The non-commercial use of the article will be governed by the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). The author hereby grants PLANTA TROPIKA an exclusive publishing and distribution license in the manuscript include tables, illustrations or other material submitted for publication as part of the manuscript (the “Article”) in print, electronic and all other media (whether now known or later developed), in any form, in all languages, throughout the world, for the full term of copyright, and the right to license others to do the same, effective when the article is accepted for publication. This license includes the right to enforce the rights granted hereunder against third parties.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
Under the Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0) license, the author(s) and users are free to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material). Users must give appropriate credit, provide a link to the license, and indicate if changes were made.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale, and
- The right to self-archive the article.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by PLANTA TROPIKA or its sublicensee.
7. Miscellaneous
PLANTA TROPIKA will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and PLANTA TROPIKA or its sublicensee has become obligated to have the article published. PLANTA TROPIKA may conform the article to a style of punctuation, spelling, capitalization, and usage that it deems appropriate.