Secondary Metabolites Application of Two Pseudomonas fluorescens isolates and Two Trichoderma Harzianum Isolates in Combination Against Postharvest Anthracnose in Papaya

Mizar Muarifah, Loekas Soesanto, Murti Wisnu Ragil Sastyawan, Endang Mugiastuti, Noor Farid

Abstract


The occurrence of papaya anthracnose is a significant post-harvest ailment, necessitating the effective disease management. The aim was to determine the ability of secondary metabolites combination of Pseudomonas fluorescens and Trichoderma harzianum isolates against the disease. A completely randomized design was used for in vitro experiments and a randomized block design for in vivo experiments. The treatments consisted of P. fluorescens P60 and T. harzianum T10, P. fluorescens P60 and T. harzianum T213, P. fluorescens P32 and T. harzianum T10, P. fluorescens P32 and T. harzianum T213 secondary metabolites and fungicides (a.i. maneb). The observed variables included the pathosystem component and papaya character and organoleptic test. The in vitro test results showed that P. fluorescens P60 and T. harzianum T10 and P. fluorescens P60 and T. harzianum T213 secondary metabolites inhibited the pathogen growth by 48.1075 and 43.4625%, respectively. The secondary metabolites of P. fluorescens P60 and T. harzianum T10 in vivo test results could delay the germination time by 12.63% and reduce the invasion area by 44.29%. All secondary metabolites had no effect on sugar content, hardness and sensory test. The combined secondary metabolites of P. fluorescens and T. harzianum are safe and does not affect papaya fruit quality.


Keywords


Combined application; Fruit quality; Organic control; Postharvest disease

Full Text:

PDF

References


Abacı, Z.T. & Asma, B.M. (2013). Examination of some physiological and biochemical changes based on ripening in fruits of different types of apricots. Journal of Plant Sciences, 1(1), 6-10.

Aini, F.N., Sukamto, S., Wahyuni, D., Suhesti, R.G., & Ayunin, Q. (2013). Growth Inhibition of Colletotrichum gloeosporioides by Trichoderma harzianum, Trichoderma koningii, Bacillus subtilis and Pseudomonas fluorescens. Pelita Perkebunan, 29(1), 44-52. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v29i1.190

Alberida, H., Eliza, & Lova, R.N. (2014). Pengaruh minyak atsiri terhadap pertumbuhan Colletotrichum gloeosporioides (Penz.) Sacc. penyebab penyakit antraknosa buah pepaya (Carica papaya L.) secara in vitro. Sainstek: Jurnal Sains dan Teknologi, 6(1): 57-64.

Ali, S.R.M., Fradi, A.J., & Al-araji, A.M. (2017). Effect of some physical factors on growth of five fungal species. European Academic Research, V(2), 1069-1078.

Aravind, G., Bhowmik, D., Duraivel, S., & Harish, G. (2013). Traditional and medicinal uses of Carica papaya. Journal of Medicinal Plants Studies, 1(1), 7-15. https://doi.org/10.22271/plants

Braun, H., Woitsch, L., Hetzer, B., Geisen, R., Zange, B., & Schmidt-Heydt, M. (2018). Trichoderma harzianum: Inhibition of mycotoxin producing fungi and toxin biosynthesis. International Journal of Food Microbiology, 280, 10-16. http://doi.org/10.1016/j.ijfoodmicro.2018.04.021

Bravdo, B.A. (1968). Decrease in net photosynthesis caused by respiration. Plant Physiol, 43(4), 479-83. http://doi.org/10.1104/pp.43.4.479

Damanik, S., Pinem, M.I., & Pengestiningsi, Y. (2013). Uji efikasi agensia hayati terhadap penyakit hawar daun bakteri (Xanthomonas oryzae pv. oryzae) pada beberapa varietas padi sawah (Oryza sativa). Jurnal Online Agroekoteknologi, 1(4), 1402-1412.

Datta, H.S. & Bora, S.S. (2019). Physiological approaches for regulation of fruit ripening: A review. International Journal of Chemical Studies, 7(3), 4587-4597.

Fabi, J.P., Broetto, S.G., da Silva, S.L.G.L., Zhong, S., Lajolo, F.M., & do Nascimento, J.R.O. (2014). Analysis of papaya cell wall-related genes during fruit ripening indicates a central role of polygalacturonases during pulp softening. PLoS ONE, 9(8), e105685. http://doi.org/10.1371/journal.pone.0105685

Feliziani, E. & Romanazzi, G. (2013). Preharvest application of synthetic fungicides and alternative treatments to control postharvest decay of fruit. Stewart Postharvest Review, 9(3): 1-6. http://doi.org/10.2212/spr.2013.3.4

Garcia-Benitez, C., Melgarejo, P., & De Cal, A. (2017). Fruit maturity and post-harvest environmental conditions influence the pre-penetration stages of Monilinia infections in peaches. Int J Food Microbiol, 241, 117-122. http://doi.org/10.1016/j.ijfoodmicro.2016.09.010

Gayosso, L., Yahia, E.M., Martínez-Téllez, M.A., & Aguilar, G.A.G. (2010). Effect of maturity stage of papaya maradol on physiological and biochemical parameters. American Journal of Agricultural and Biological Science, 5(2), 194-203. https://doi.org/10.3844/ajabssp.2010.194.203

Han, J.S., Cheng, J.H., Yoon, T.M., Song, J., Rajkarnikar, A., Kim, W.G., Yoo, I.D., Yang, Y.Y., & Suh, J.W. (2012). Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua. Journal of Applied Microbiology, 99(1), 213–221. http://doi.org/10.1111/j.1365-2672.2005.02614.x

Herliyana, E.N., Jamilah, R., Taniwiryono, D., & Firmansyah, M.A. (2013). In-vitro Test of Biological Control by Trichoderma spp. Toward Ganoderma that attacked Sengon. Jurnal Silvikultur Tropika, 4(3), 190–195.

Jayathunge, K.G.L.R., Prasad, H.U.K.C., Fernando, M.D., & Palipane, K.B. (2011). Prolonging the postharvest life of papaya using modified atmosphere packaging. Journal of Agricultural Technology, 7(2), 507-518.

Kadam, V., Bankar, P., Bhosale, A., Shitole, S., Chandankar, S., Wagh, S., Chitale, R., & Kanade, M.B. (2019). Studies on post-harvest fungal pathogens of papaya fruits (Carica papaya L.). Int. J. Curr. Microbiol. App. Sci., 8(7), 2176-2180. http://doi.org/10.20546/ijcmas.2019.807.263

Karabulut, I., Gokbulut, I., Bilenler, T., Sislioglu, K., Ozdemir, I.S., Bahar, B., Çelik, B., & Seyhan, F. (2018). Effect of fruit maturity level on quality, sensory properties and volatile composition of two common apricot (Prunus armeniaca L.) varieties. Journal of Food Science and Technology, 55, 2671–2678. http://doi.org/10.1007/s13197-018-3189-8

Khadivi-Khub, A. (2014). Physiological and genetic factors influencing fruit cracking. Acta Physiologiae Plantarum, 37(1), 1718. http://doi.org/10.1007/s11738-014-1718-2

Khokhar, I., Haider, M.S., Mukhtar, I., & Mushatq, S. (2012). Biological control of Aspergillus niger, the cause of black-rotdisease of Allium cepa L. (onion), by Penicillium species. Journal of Agrobiology, 29(1), 23-28. http://doi.org/10.2478/v10146-012-0003-5

Ministry of Agriculture RI. (2022). Produksi Buah-Buahan di Indonesia, 2015-2019. Indonesian Ministry of Agriculture. https://www.pertanian.go.id/home/?show=page&act=view&id=61

Moreno, J.L., Tran, T., Cantero-Tubilla, B., López-López, K., Lavalle, L.A.B.L., & Dufour, D. (2020). Physicochemical and physiological changes during the ripening of banana (Musaceae) fruit grown in Colombia. International Journal of Food Science + Technology, 56(3), 1171-1183. https://doi.org/10.1111/ijfs.14851

Mukhtar, M.F., Wusa, N.R., Danladi, U.I., & Salisu, N. (2019). Isolation and characterization of fungal species from spoilt fruits in Utako Market, Abuja, Nigeria. Journal of Applied Sciences, 19(1), 15-19. http://doi.org/10.3923/jas.2019.15.19

Özkale, E. (2017). Screening of secondary metabolites and inhibitory activities of native Trichoderma harzianum strains against to various fungi and bacteria. International Journal of Applied Research in Natural Products, 7(1), 1-6.

Paul, P. & Pandey, R. (2014). Role of internal atmosphere on fruit ripening and storability—a review. J Food Sci Technol., 51(7), 1223–1250. http://doi.org/10.1007/s13197-011-0583-x

Peres, N.A.R., Kuramae, E.E., Dias, M.S.C., & De Souza, N.L. (2008). Identification and Characterization of Colletotrichum spp. affecting Fruit after Harvest in Brazil. Journal of Phytopathology, 150(3), 128-134. http://doi.org/10.1046/j.1439-0434.2002.00732.x

Perotti, V.E., Moreno, A.S., & Podestá F.E. (2014). Physiological aspects of fruit ripening: the mitochondrial connection. Mitochondrion, 17, 1-6. http://doi.org/10.1016/j.mito.2014.04.010

Proto, M.R., Biondi, E., Baldo, D., Levoni, M., Filippini, G., Modesto, M., Vito, M.D., Bugli, F., Ratti, C., Minardi, P., & Mattarelli, P. (2022). Essential oils and hydrolates: Potential tools for defense against bacterial plant pathogens. Microorganisms, 10(4), 702. http://doi.org/10.3390/microorganisms10040702

Ragavi, G., Muthamilan, M., Nakkeeran, S., Kumaravadivel, N., Sivakumar, U., & Suganthi, A. (2019). Molecular detection of the causative agent of soft rot (Pectobacterium carotovorum subsp. carotovorum) in banana (Musa sp.). Int. J. Curr. Microbiol. App. Sci., 8(11). 1854-1868. http://doi.org/10.20546/ijcmas.2019.811.218

Rajeswari, P. (2019). Combination of Trichoderma viride and Pseudomonas fluorescens for the enhanced control of Fusarium wilt disease caused by Fusarium oxysporum infecting Arachis hypogaea L. Journal of Applied and Natural Science, 11(1), 138-143. http://doi.org/10.31018/jans.v11i1.1985

Rakhmankulova, Z.F. (2022). Plant respiration and global climatic changes. Russ J Plant Physiol, 69, 109. http://doi.org/10.1134/S1021443722060218

Rangkuti, E.E., Wiyono, S., & Widodo. (2017). Identifikasi Colletotrichum spp. asal tanaman papaya. Jurnal Fitopatologi Indonesia, 13(5), 175–183. http://doi.org/10.14692/jfi.13.5.175

Rani, A., Singh, R., Kumar, P., & Shukla, G. (2017). Pros and cons of fungicides: An overview. International Journal of Engineering Sciences & Research Technology (IJESRT), 6(1): 112-117. http://doi.org/10.5281/zenodo.233295

Rieusset, L., Rey, M., Muller, D., Vacheron, J., Gerin, F., Dubost, A., Comte, G., & Prigent-Combaret, C. (2020). Secondary metabolites from plant-associated Pseudomonas are overproduced in biofilm. Microbial Biotechonology, 13(5), 1562-1580. http://doi.org/10.1111/1751-7915.13598

Rovira, D., Alfaro, C., Martínez, V., & Menjívar. I. (2019). Respiration rate and shelf-life study of Crotalaria longirostrata (chipilín). Journal of Food Measurement and Characterization, 13, 3025–3032. http://doi.org/10.1007/s11694-019-00224-2

Santana, L.F., Inada, A.C., do Espirito Santo, B.L.S., Filiú, W.F.O., Pott, A., Alves, F.M., de Cássia A. Guimarães, R., de Cássia Freitas, K., & Hiane, P.A. (2019). Nutraceutical potential of Carica papaya in metabolic syndrome. Nutrients. 11(7), 1608. http://doi.org/10.3390/nu11071608

Santoso, S.E., Soesanto, L. & Haryanto, T.A.D. (2007). Penekanan hayati penyakit moler pada bawang merah dengan Trichoderma harzianum, Trichoderma koningii, dan Pseudomonas fluorescens P60. Jurnal Hama dan Penyakit Tumbuhan Tropika, 7(1), 53–61.

Sarkar, A.K. (2016). Anthracnose diseases of some common medicinally important fruit plants. Journal of Medicinal Plants Studies, 4(3), 233-236.

Saryoko, A., R. Yuniar, A., & Sujiprihati, S. (2004). Karakterisasi Plasma Nutfah Pepaya di Pusat Kajian Buah-buahan Tropika, IPB. Prosiding Simposium Nasional Peripi. Perhimpunan Ilmu Pemuliaan Indonesia dan Fakultas Pertanian, IPB, 393-401.

Soesanto, L., Soedharmono, Prihatiningsih, N., Manan, A., Iriani, E., & Pramono, J. (2005). Potensi agensia hayati dan nabati dalam mengendalikan penyakit busuk rimpang jahe. Jurnal Hama dan Penyakit Tumbuhan Tropika, 5(1), 50-57. https://doi.org/10.23960/j.hptt.1550-57

Soesanto, L., E. Mugiastuti, & R.F. Rahayuniati. (2010). Kajian mekanisme antagonis Pseudomonas fluorescens P60 terhadap Fusarium oxysporum f.sp. lycopersici pada tanaman tomat in vivo. Jurnal Hama dan Penyakit Tumbuhan Tropika, 10(2): 108–115. https://doi.org/10.23960/j.hptt.210108-115

Soesanto, L., Mugiastuti, E., & Khoeruriza. (2019). Granular formulation test of Pseudomonas fluorescens P60 for controling bacterial wilt (Ralstonia solanacearum) of tomato In Planta. AGRIVITA Journal of Agricultural Science, 41(3), 513–523. http://doi.org/10.17503/agrivita.v41i3.2318

Soesanto, L., Mugiastuti, E., Suyanto, A., & Rahayuniati, R.F. (2020). Application of raw secondary metabolites from two isolates of Trichoderma harzianum against anthracnose on red chili pepper in the field. Jurnal Hama dan Penyakit Tumbuhan Tropika, 20(1), 19-27. http://doi.org/10.23960/j.hptt.12019-27

Sudha, S., Narendrappa, T., & Sivakumar, G. (2021). Management of post-harvest anthracnose disease in mango using promising biocontrol agents. The Pharma Innovation Journal, 10(3), 210-214.

Suketi, K., Poerwanto, R., Sujiprihati, S., Sobir, & Widodo, W.D. (2010). Studi karakter mutu buah pepaya IPB. Jurnal Hortikultura Indonesia, 1(1), 17-26. https://doi.org/10.29244/jhi.1.1.17-26

Syabana, M.A., Saylendra, A., & Ramdhani, D. (2015). Aktivitas anti cendawan ekstrak daun sereh wangi (Cymbopogon nardus L.) terhadap Colletotrichum sp. penyebab penyakit antraknosa pada buah cabai (Capsicum annum L.) secara in vitro dan in vivo. Agrologia, 4(1), 21-27. http://dx.doi.org/10.30598/a.v4i1.220

Talibi, I., Boubaker, H., Boudyach, E.H., & Aoumar, A.A.B. (2014). Alternative methods for the control of postharvest citrus diseases. J Appl Microbiol., 117(1), 1-17. http://doi.org/10.1111/jam.12495

Thambugala, K., Daranagama, D.A., Phillips, A.J.L., Kannangara, S.D., & Promputtha, I. (2020). Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Front Cell Infect Microbiol., 10, 604923. http://doi.org/10.3389/fcimb.2020.604923

Thibaud, F., Courregelongue, M., & Darriet, P. (2020). Contribution of volatile odorous terpenoid compounds to aged cognac spirits aroma in a context of multicomponent odor mixtures. J Agric Food Chem, 68(47), 13310-13318. http://doi.org/10.1021/acs.jafc.9b06656

Tigist, M., Workneh, T.S., & Woldetsadik, K. (2013). Effects of variety on the quality of tomato stored under ambient conditions. J Food Sci Technol., 50(3), 477–486. http://doi.org/10.1007/s13197-011-0378-0

Tonutti, P., Droby, S., & Romanazzi, G. (2016). Alternative approaches to synthetic fungicides to manage postharvest decay of fruit and vegetables: Needs and purposes of a special issue. Postharvest Biology and Technology, 122,1-2. http://doi.org/10.1016/j.postharvbio.2016.09.001

Tripathi, K., Pandey, S., Malik, M., & Kaul, T. (2016). Fruit ripening of climacteric and non climacteric fruit. Journal of Environmental and Applied Bioresearch, 4(1), 27-34.

Tyśkiewicz, R., Nowak, A., Ozimek, E., & Jaroszuk-Ściseł, J. (2022). Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Int J Mol Sci., 23(4), 2329. http://doi.org/10.3390/ijms23042329

Wallace, R.L., Hirkala, D.L., & Nelson, L.M. (2018). Mechanisms of action of three isolates of Pseudomonas fluorescens active against postharvest grey mold decay of apple during commercial storage. Biological Control, 117, 13-20. http://doi.org/10.1016/j.biocontrol.2017.08.019

Wang, Q., Duan, B., Yang, R., Zhao, Y., & Zhang, L. (2015). Screening and identification of chitinolytic Actinomycetes and study on the inhibitory activity against turfgrass root rot disease fungi. Journal of Biosciences and Medicines, 3, 56-65. http://doi.org/10.4236/jbm.2015.33009

Zboralskia, A. & Filion, M. (2020). Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. Computational and Structural Biotechnology Journal, 18, 3539-3554. http://doi.org/10.1016/j.csbj.2020.11.025

Zhang, Q., Li, Y., Xu, F., Zheng, M., Xi, X., Zhang, X., & Han, C. (2017). Optimization of submerged fermentation medium for matrine production by Aspergillus terreus, an endophytic fungus harboring seeds of Sophora flavescens, using response surface methodology. Mycobiology, 45(2), 90-96. http://doi.org/10.5941/MYCO.2017.45.2.90

Zhang, Z.-Q., Chen, T., Li, B.-Q., Qin, G.-Z., & Tian, S.-P. (2021). Molecular basis of pathogenesis of postharvest pathogenic fungi and control strategy in fruits: progress and prospect. Mol Horticulture, 1(1), 2. http://doi.org/10.1186/s43897-021-00004-x

Zin, N.A. & Badaluddin, N.A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2), 168-178. http://doi.org/10.1016/j.aoas.2020.09.003




DOI: https://doi.org/10.18196/pt.v11i2.14594

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Mizar Muarifah, Loekas Soesanto, Murti Wisnu Ragil Sastyawan, Noor Farid

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





 

Editorial Office
Planta Tropika
Department of Agrotechnology, Faculty of Agriculture, Universitas Muhammadiyah Yogyakarta
Jl. Brawijaya, Tamantirto, Kasihan, Bantul, D.I. Yogyakarta, Indonesia
Phone: +62 274 387656, Ext.: 224 / +62 81329320575
Email: plantatropika@umy.ac.id
E-ISSN: 2528-7079
p-ISSN: 0216-499X

 

Creative Commons License
Planta Tropika is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.