Thidiazuron-Induced Somatic Embryogenesis in Cymbidium bicolor Orchid In Vitro
DOI:
https://doi.org/10.18196/pt.v13i1.15306Keywords:
Clone, Differentiation, Plant propagation, Somatic embryoAbstract
Cymbidium bicolor is a highly hunted and traded orchid, leading to a decline in its wild population. Orchid conservation can be achieved through tissue culture, particularly via somatic embryogenesis. Thidiazuron (TDZ) is a growth regulator used to induce somatic embryogenesis. This study aimed to determine the optimal TDZ concentration for somatic embryo formation. Stem explants of C. bicolor were cultured on Murashige Skoog (MS) medium with TDZ concentrations of 0, 1, 2, and 3 ppm. Observations were conducted weekly for two months using a stereo microscope and OptiLab. Variables observed included the percentage of green explants, somatic embryo formation time, the number of explants forming somatic embryos, and the number and morphology of somatic embryos. The study was arranged in a Completely Randomized Design (CRD) with 14 replications. Results showed that TDZ addition influenced somatic embryo formation and maintained the green color of explants. Media with TDZ promoted faster growth and larger embryo size compared to media without TDZ. The optimal concentration was 1 ppm TDZ, which produced the highest number of embryos (172) and the fastest formation time compared to other concentrations (TDZ 0: 27, TDZ 2 ppm: 60, TDZ 3 ppm: 39).
References
Adri, R. F. (2019). Induksi Kalus Theobroma cacao sebagai Tahap Awal Pengembangan Tanaman Melalui Embriogenesis Somatik. Menara Ilmu, 13(8), 69–73. https://doi.org/10.33559/MI.V13I8.1484
Agustin, R., Suharsono, & Rizal Putra, R. (2020). Pengaruh Ekstrak Tomat Terhadap pertumbuhan Embrio Anggrek Phaius tankervilleae Khas Gunung Galunggung Kabupaten Tasikmalaya. Bioma : Jurnal Ilmiah Biologi, 9(2), 264–279. http://103.98.176.9/index.php/bioma/article/view/7064
Ali, H. M., Khan, T., Khan, M. A., Ullah, N. (2022). The Multipotent Thidiazuron: A Mechanistic Overview of its Roles in Callogenesis and Other Plant Cultures in vitro. Biotechnology and Applied Biochemistry, 69(6), 2624-2640. https://doi.org/10.1002/bab.2311
Amente, G & Chimdessa, E. (2021). Control of Browning in Plant Tissue Culture: A Review. Journal of Scientific Agriculture, 5, 67-71. https://doi.org/10.25081/jsa.2021.v5.7266
Ardiyani, F., Utami, E. S. W., Purnobasuki, H., Paramita, S. A. (2020). Development and regeneration of somatic embryos from leaves-derived calli of Coffea liberica. Biodiversitas, 21(12), 5829-5834.
Bariyyah, K., & Putri, I. (2021). Kajian Kombinasi Perlakuan Zat Pengatur Tumbuh TDZ dan Benzil Adenin Terhadap Perkembangan Kalus Durian Merah. Agroekoteknologi, 13(1), 52–60. https://doi.org/http://dx.doi.org/10.33512/jur.agroekotetek.v13i1
Budi, R. S. (2020). Uji Komposisi Zat Pengatur Tumbuh Terhadap Pertumbuhan Eksplan Pisang Barangan (Musa paradisiaca L.) Pada Media MS Secara in vitro. BEST Journal (Biology Education, Sains and Technology), 3(1), 101–111. https://doi.org/10.30743/best.v3i1.2475
Burgel, L., Hartung, J., Schibano, D., & Graeff-Hönninger, S. (2020). Impact of Different Phytohormones on Morphology, Yield and Cannabinoid Content of Cannabis sativa L.. Plants, 9(725), 1–16. https://doi.org/10.3390/plants9060725
Carnelos, D., Miglioli, J. L., Giardina, E., Tognetti, J., Benedetto, A. H. (2022). Cytokinin Action Revisited: Leaf Anatomical Changes Play a Key Role in 6-Benzilaminopurine-driven Growth in Pot-grown Lettuce. Revista Chapingo Serie Horticultura, 28(2), 109-133. https://doi.org/10.5154/r.rchsh.2021.07.015
Chandel, N. S. (2024). Nucleotide Metabolism. Cold Spring Harb Prespect Biol, 13. https://doi:10.1101/cshperspect.a040592
Chen, L., Jameson, G. B., Guo, Y., Song, J., Jameson, P. E. (2022). The Lonely Guy Gene Family: From Mosses to Wheat, The Key to the Formation of Active Cytokinins in Plants. Plant Biotechnol J., 20(4), 625-645. https://doi.org/10.1111/pbi.13783
Devireddy, A. R., Zandalinas, S. I., Fichman, Y., & Mittler, R. (2020). Integration of reactive oxygen species and hormone signaling during abiotic stress. The Plant Journal, 105(1), 459–476. https://doi.org/10.1111/tpj.15010
Dewi, N. P. Y. A., Angket, S., Ledheng, L., Sele, Y., Weisillana. (2024). Diversity of Orchid Types in the Oeluan Tourism Forest, Bijeli Village, Noemuti District, North Central Timor Regency. Interdiciplinary International Journal of Conservation and Culture, 2(1), 31-38. https://doi.org/10.25157/iijcc.v2i1.3906
Erland, L., Giebelhaus, R., Victor, J. M. R., Murch, S. J., & Saxena, P. K. (2020). The morphoregulatory role of thidiazuron: Metabolomics-guided hypothesis generation for mechanisms of activity. Biomolecules, 10(9), 1–34. https://doi.org/10.3390/biom10091253
Fadón, E., Fernandez, E., Behn, H., & Luedeling, E. (2020). A Conceptual Framework for Winter Dormancy in Deciduous Trees. Agronomy, 10(241), 1–20. https://doi.org/10.3390/agronomy10020241
Fahima, A., Levinkron, S., Maytal, Y., Hugger, A., Lax, I., Huang, X., Eyal, Y., Lichter, A., Goren, M., Stern, R. A., & Harpaz-Saad, S. (2019). Cytokinin treatment modifies litchi fruit pericarp anatomy leading to reduced susceptibility to post-harvest pericarp browning. Plant Science, 283(10), 41–50. https://doi.org/10.1016/j.plantsci.2019.02.006
Feher, A. (2019). Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology?. Front Plant Sci, 10. https://doi.org/10.3389/fpls.2019.00536
Ghahremani, R., Daylami, S. D., Mirmasoumi, M., Askari, N., Vahdati, K. (2021). Refining a Protocol For Somatic Embryogenesis and Plant Regeneration of Phalaenopsis amabilis cv. Jinan from Mature Tissues. Turkish Journal of Agriculture and Forestry, 45(3), 356-364. https://doi.org/10.3906/tar-2004-107
Gulzar, B., Mujib, A., Qadir Malik, M., Sayeed, R., Mamgain, J., & Ejaz, B. (2020). Genes, proteins, and other networks regulating somatic embryogenesis in plants. Journal of Genetic Engineering and Biotechnology, 18(31), 1–15. https://doi.org/10.1186/s43141-020-00047-5
Hernandez, H. A., Rodriguez, M. L., Montalvo, R. N. A., Gomez, Y. L. J., Skeete, A., Montalvo, J. A., Pena, C. D. L., & Vargas, V. M. L. (2019). Signaling Overview of Plant Somatic Embryogenesis. Front. Plant Sci., 10,77. https://doi.org/10.3389/fpls.2019.00077
Hong, Lee, Z., Hirakawa, T., Yamaguchi, N., & Ito, T. (2019). Molecular Sciences The Roles of Plant Hormones and Their Interactions with Regulatory Genes in Determining Meristem Activity. International Journal of Molecular Sciences, 20(4065), 1–19. https://doi.org/10.3390/ijms20164065
Jaiswal, N., Verma, Y., & Misra, P. (2021). High frequency in vitro callogenesis and plant regeneration of Glycyrrhiza glabra L.. Vegetos, 34(3), 495–504. https://doi.org/10.1007/s42535-021-00219-9
Jayusman. (2021). Biotechnologi Propagasi Vegetatif Tanaman Hutan: Keuntungan dan Risiko. Prosiding SNPBS (Seminar Nasional Pendidikan Biologi Dan Saintek), 6(1), 248–257. https://proceedings.ums.ac.id/index.php/snpbs/article/view/40
Kong, E. Y. Y., Biddle, J., Foale, M., & Adkins, S. W. (2020). Cell suspension culture: A potential in vitro culture method for clonal propagation of coconut plantlets via somatic embryogenesis. Industrial Crops and Products, 147(1), 1–19. https://doi.org/10.1016/j.indcrop.2020.112125
Krisdianto, A., Saptiningsih, E., Nurchayati, Y., & Setiari, N. (2020). View of Growth of Phalaenopsis amabilis (L.) Blume Orchid Plantlet on Subculture Stage by Difference of Media Types and Pepton Concentrations. Journal of Biological Sciences, 7(2), 39–47. https://doi.org/10.24843/metamorfosa.2020.v07.i02.p06
Lizawati, L., Zulkarmain, Z., Antony, D., Purnamaningsih, R. (2023). The effect of 2,4-D, BA and Thidiazuron on somatic embryo induction of liberica coffee of Tungkal Composite from Jambi. E3S Web of Conferences 373, 03012. https://doi.org/10.1051/e3sconf/202337303012
Lopez, R. A., Rodriguez, M. L., Contreras, A. S., Avelizapa, L. I. R., Coello, N. G. S., Collado, N. M., Pastrana, R. N. (2022). Inorganic Compounds that Aid in Obtaining Somatic Embryos. Methods Mol Biol, 2527, 203-221. https://doi.org/10.1007/978-1-0716-2485-2_15
Loyola-Vargas, M., Ochoa-Alejo, N., Elhiti, M., & Stasolla, C. (2022). Transduction of Signals during Somatic Embryogenesis. Plants, 11(178), 1–16. https://doi.org/10.3390/plants11020178
Mahendran, G., & Bai, V. N. (2012). Direct somatic embryogenesis and plant regeneration from seed-derived protocorms of Cymbidium bicolor Lindl. Scientia Horticulturae, 135(1), 40–44. https://doi.org/10.1016/j.scienta.2011.12.003
Mihovilovic, A. B., Jercic, I. H., Prebeg, T., Pavicic, I. A., Baric, M., Keresa, S. (2020). Light Source and Cytokinin Type Affect Multiplication Rate, Chlorophyll Content and Stomata Formation of Amelanchier alnifolia Shoots in Vitro. Journal of Central European Agriculture, 21(4), 826-838. https://doi.org/10.5513/JCEA01/21.4.2909
Mose, W., Daryono, B. S., Indrianto, A., Purwanto, A., Semiarti, E. (2020). Direct Somatic Embryogenesis and Regeneration of an Indonesian orchid Phalaenopsis amabilis (L.) Blume under a Variety of Plant Growth Regulators, Light Regime, and Organic Substances. Jordan Journal of Biological Sciences, 13(4), 509-518.
Murgayanti, M., Sumadi, S., & N, R. F. (2020). Multiplikasi tunas kunyit putih (Kaempferia rotunda L.) pada jenis dan konsentrasi sitokinin secara in vitro. Kultivasi, 19(3), 1230–1236. https://doi.org/10.24198/kultivasi.v19i3.29469
Narváez, I., Martín, C., Jiménez-Díaz, R. M., Mercado, J. A., & Pliego-Alfaro, F. (2019). Plant Regeneration via Somatic Embryogenesis in Mature Wild Olive Genotypes Resistant to the Defoliating Pathotype of Verticillium dahliae. Frontiers in Plant Science, 10(1), 1–11. https://doi.org/10.3389/fpls.2019.01471
Pardede, Y., Mursyanti, E., & Sidharta, B. R. (2021). Pengaruh Hormon terhadap Induksi Embrio Somatik Kacapiring (Gardenia jasminoides) dan Potensi Aplikasinya dalam Pembuatan Benih Sintetik. Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati, 6(3), 162–177. https://doi.org/10.24002/biota.v6i3.4093
Permadi, N., Nurzaman, M., Alhasnawi, A. N., Doni, F., Julaeha, E. (2023). Managing Lethal Browning and Microbial Contamination in Musa spp. Tissue Culture: Synthesis and Perspectives. Horticultrae, 9(4), 453. https://doi.org/10.3390/horticulturae9040453
Pratama, F. F., Setiari, N., Nurchayati, Y. (2021). Growth of Cymbidium bicolor Lindl. Plantlet During Subculture With Variation of Media. Jurnal Biologi Udayana, 25, 71-77. https://doi.org/10.24843/JBIOUNUD.2021.v25.i01.p08
Punja, Z. K., Collyer, D., Scott, C., Lung, S., Holmes, J., & Sutton, D. (2019). Pathogens and Molds Affecting Production and Quality of Cannabis sativa L. Frontiers in Plant Science, 10(1120), 1–23. https://doi.org/10.3389/fpls.2019.01120
Pyati, A. N. (2022). In vitro Propagation of orchid (Dendrobium ovatum (L.) Kraenzl.) through Somatic Embryogenesis. Plant Tissue Cult. & Biotech., 32(1), 53-6. https://doi.org/10.3329/ptcb.v32i1.60472
Rahmah, M., Anwar, A., & Swasti, E. (2020). Karamunting (Rhodomyrtus tomentosa) Callus Induction In Vitro. International Journal of Environment, Agriculture and Biotechnology, 5(2), 459–465. https://doi.org/10.22161/ijeab.52.20
Restanto, D. P., Felayati, I., Fanata, W. I. D., Dewanti, P., Kriswanto, B., Khozin, M. N., Prayoga, M. C. (2023). Optimization of TDZ Hormone on the Formation of Somatic Embryogenesis in Dendrobium Orchids (D.50TH Stage Beauty X D. Bobby Mesina). Jurnal Natur Indonesia, 21(1), 42-46. https://doi.org/10.31258/jnat
Rineksane, I. A., Juliarachmi, A. F., Putri, R. K., Astuti, A., & Samidjo, G. S. (2021). Optimization of 2,4-D and Cytokinin Combination for the Growth of Vanda tricolor in Solid and Liquid Medium. IOP Conference Series: Earth and Environmental Science, 752(1), 1–7. https://doi.org/10.1088/1755-1315/752/1/012025
Rostiana, O. (2020). Aplikasi Sitokinin Tipe Purin Dan Urea Pada Multiplikasi Tunas Anis (Pimpinellla anisum L.) In Vitro. Jurnal Penelitian Tanaman Industri, 13(1), 1–7. https://doi.org/10.21082/jlittri.v13n1.2007.1-7
Sumihar, S. T. T., Siahaan, F. R., Pujiastuti, E. S., & Laia, D. A. S. (2021). Leaf Fertilizer as a Source of Nutrients for In Vitro Propagation Culture Media of Banana Raja Bulu (Musa paradisiaca L. cv. Raja Bulu). Jurnal Ilmu Pertanian, 9(2), 89–94.
Syamsiah, M., Imansyah, A. A., Suprapti, H. K., & Badriah, D. S. (2020). Respon Multiplikasi Anggrek Bulan (Phalaenopsis sp.) Terhadap Penambahan BAP(Benzyl Amino Purine) pada Media in vitro. Agroscience (Agsci), 10(2), 148. https://doi.org/10.35194/agsci.v10i2.1157
Vallado, N., Almeida, D., Borges, E., & Carlos, J. (2022). Plant Science Somatic embryogenesis from flower tepals of Hippeastrum aiming regeneration of virus-free plants. Plant Science, 317, 111191. https://doi.org/10.1016/j.plantsci.2022.111191
Wang, S.-L., Kasi Viswanath, K., Tong, C.-G., Ryun An, H., Jang, S., & Chen, F.-C. (2019a). Floral Induction and Flower Development of Orchids. Frontier in Plant Science, 10(1258). https://doi.org/10.3389/fpls.2019.01258
Wang, W., Hao, Q., Wang, W., Li, Q., Chen, F., Ni, F., Wang, Y., Fu, D., Wu, J., & Wang, W. (2019b). The involvement of cytokinin and nitrogen metabolism in delayed flag leaf senescence in a wheat stay-green mutant, tasg1. Plant Science, 278(8), 70–79. https://doi.org/10.1016/j.plantsci.2018.10.024
Wehbi, H., Soulhat, C., Morin, H., Bendahmane, A., Hilson, P., & Bouchabké-Coussa, O. (2022). One-Week Scutellar Somatic Embryogenesis in the Monocot Brachypodium distachyon. Plants, 11(1068), 1–17. https://doi.org/10.3390/plants11081068
Xu, J., Su, Y. H., & Fehér, A. (2019). Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology? Frontiers in Plant Science, 10(536), 1–11. https://doi.org/10.3389/fpls.2019.00536
Yudaputra, A., Munawaroh, E., Usmadi, D., Purnomo, D. W., Astuti, I. P., Puspitaningtyas, D. P., Handayani, T., Garvita, T. R., Aprilianti, P., Wawangningrum, H., Renjana, E., Handini, E., Angio, M. H., Firdiana, E. R., Witono, J. R., Juswara, L. S., Fijridiyanto, I. A., Ariati, S. R., Yuzammi, Sudarmono, Wanda, I. F., Wibowo, A. R. W., Wati, R. K., Hutabarat, P. W. K., Raharjo, P. D., Solihah, S. M., Saputra, R., Cropper, W. P. (2024). Vulnerability of Lowland and Upland Orchids in Their Spatially Response to Climate Change and Land Cover hange. Ecological Informatics, 80, 102534. https://doi.org/10.1016/j.ecoinf.2024.102534
Yuniati & Isda, M. N. (2024). Combination of Thidiazuron and Basal Media Type on Optimizing in vitro Growth of Grammatophyllum stapeliiflorum Orchid. Jurnal Ilmiah Pertanian, 21(1), 21-32. https://doi.org/10.31849/jip.v21i1.12829
Zhao, J., Wang, J., Liu, J., Zhang, P., Kudoyarova, G., Liu, C. J., Zhang, K. (2024). Spatially distributed cytokinins: Metabolism, signaling, and transport. Plant Communications, 5(7), 2590-3462, https://doi.org/10.1016/j.xplc.2024.100936
Zhao, S., Wang, H., Liu, K., Li, L., Yang, J., An, X., Li, P., Yun, L., & Zhang, Z. (2021). The role of JrPPOs in the browning of walnut explants. BMC Plant Biology, 21(1), 1–12. https://doi.org/10.1186/s12870-020-02768-8
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Azura Muzdalifah Istiqomah

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PLANTA TROPIKA is committed to its authors to protect and defend their work and their reputation and takes allegations of infringement, plagiarism, ethical disputes, and fraud very seriously. PLANTA TROPIKA is published under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Authors retain copyright and grant the journal right of first publication (online and print) with the work simultaneously.
LICENSE
1. License to Publish
The non-commercial use of the article will be governed by the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). The author hereby grants PLANTA TROPIKA an exclusive publishing and distribution license in the manuscript include tables, illustrations or other material submitted for publication as part of the manuscript (the “Article”) in print, electronic and all other media (whether now known or later developed), in any form, in all languages, throughout the world, for the full term of copyright, and the right to license others to do the same, effective when the article is accepted for publication. This license includes the right to enforce the rights granted hereunder against third parties.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
Under the Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0) license, the author(s) and users are free to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material). Users must give appropriate credit, provide a link to the license, and indicate if changes were made.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale, and
- The right to self-archive the article.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by PLANTA TROPIKA or its sublicensee.
7. Miscellaneous
PLANTA TROPIKA will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and PLANTA TROPIKA or its sublicensee has become obligated to have the article published. PLANTA TROPIKA may conform the article to a style of punctuation, spelling, capitalization, and usage that it deems appropriate.