Thidiazuron-Induced Somatic Embryogenesis in Cymbidium bicolor Orchid In Vitro

Authors

  • Azura Muzdalifah Istiqomah Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Sudarto No.13, Tembalang, Tembalang District, Semarang City, 50275, Indonesia https://orcid.org/0000-0002-1415-0267
  • Nintya Setiari Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Sudarto No.13, Tembalang, Tembalang District, Semarang City, 50275, Indonesia
  • Yulita Nurchayati Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Sudarto No.13, Tembalang, Tembalang District, Semarang City, 50275, Indonesia

DOI:

https://doi.org/10.18196/pt.v13i1.15306

Keywords:

Clone, Differentiation, Plant propagation, Somatic embryo

Abstract

Cymbidium bicolor is a highly hunted and traded orchid, leading to a decline in its wild population. Orchid conservation can be achieved through tissue culture, particularly via somatic embryogenesis. Thidiazuron (TDZ) is a growth regulator used to induce somatic embryogenesis. This study aimed to determine the optimal TDZ concentration for somatic embryo formation. Stem explants of C. bicolor were cultured on Murashige Skoog (MS) medium with TDZ concentrations of 0, 1, 2, and 3 ppm. Observations were conducted weekly for two months using a stereo microscope and OptiLab. Variables observed included the percentage of green explants, somatic embryo formation time, the number of explants forming somatic embryos, and the number and morphology of somatic embryos. The study was arranged in a Completely Randomized Design (CRD) with 14 replications. Results showed that TDZ addition influenced somatic embryo formation and maintained the green color of explants. Media with TDZ promoted faster growth and larger embryo size compared to media without TDZ. The optimal concentration was 1 ppm TDZ, which produced the highest number of embryos (172) and the fastest formation time compared to other concentrations (TDZ 0: 27, TDZ 2 ppm: 60, TDZ 3 ppm: 39).

Author Biography

Azura Muzdalifah Istiqomah, Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Sudarto No.13, Tembalang, Tembalang District, Semarang City, 50275, Indonesia

Biology Department, Student

References

Adri, R. F. (2019). Induksi Kalus Theobroma cacao sebagai Tahap Awal Pengembangan Tanaman Melalui Embriogenesis Somatik. Menara Ilmu, 13(8), 69–73. https://doi.org/10.33559/MI.V13I8.1484

Agustin, R., Suharsono, & Rizal Putra, R. (2020). Pengaruh Ekstrak Tomat Terhadap pertumbuhan Embrio Anggrek Phaius tankervilleae Khas Gunung Galunggung Kabupaten Tasikmalaya. Bioma : Jurnal Ilmiah Biologi, 9(2), 264–279. http://103.98.176.9/index.php/bioma/article/view/7064

Ali, H. M., Khan, T., Khan, M. A., Ullah, N. (2022). The Multipotent Thidiazuron: A Mechanistic Overview of its Roles in Callogenesis and Other Plant Cultures in vitro. Biotechnology and Applied Biochemistry, 69(6), 2624-2640. https://doi.org/10.1002/bab.2311

Amente, G & Chimdessa, E. (2021). Control of Browning in Plant Tissue Culture: A Review. Journal of Scientific Agriculture, 5, 67-71. https://doi.org/10.25081/jsa.2021.v5.7266

Ardiyani, F., Utami, E. S. W., Purnobasuki, H., Paramita, S. A. (2020). Development and regeneration of somatic embryos from leaves-derived calli of Coffea liberica. Biodiversitas, 21(12), 5829-5834.

Bariyyah, K., & Putri, I. (2021). Kajian Kombinasi Perlakuan Zat Pengatur Tumbuh TDZ dan Benzil Adenin Terhadap Perkembangan Kalus Durian Merah. Agroekoteknologi, 13(1), 52–60. https://doi.org/http://dx.doi.org/10.33512/jur.agroekotetek.v13i1

Budi, R. S. (2020). Uji Komposisi Zat Pengatur Tumbuh Terhadap Pertumbuhan Eksplan Pisang Barangan (Musa paradisiaca L.) Pada Media MS Secara in vitro. BEST Journal (Biology Education, Sains and Technology), 3(1), 101–111. https://doi.org/10.30743/best.v3i1.2475

Burgel, L., Hartung, J., Schibano, D., & Graeff-Hönninger, S. (2020). Impact of Different Phytohormones on Morphology, Yield and Cannabinoid Content of Cannabis sativa L.. Plants, 9(725), 1–16. https://doi.org/10.3390/plants9060725

Carnelos, D., Miglioli, J. L., Giardina, E., Tognetti, J., Benedetto, A. H. (2022). Cytokinin Action Revisited: Leaf Anatomical Changes Play a Key Role in 6-Benzilaminopurine-driven Growth in Pot-grown Lettuce. Revista Chapingo Serie Horticultura, 28(2), 109-133. https://doi.org/10.5154/r.rchsh.2021.07.015

Chandel, N. S. (2024). Nucleotide Metabolism. Cold Spring Harb Prespect Biol, 13. https://doi:10.1101/cshperspect.a040592

Chen, L., Jameson, G. B., Guo, Y., Song, J., Jameson, P. E. (2022). The Lonely Guy Gene Family: From Mosses to Wheat, The Key to the Formation of Active Cytokinins in Plants. Plant Biotechnol J., 20(4), 625-645. https://doi.org/10.1111/pbi.13783

Devireddy, A. R., Zandalinas, S. I., Fichman, Y., & Mittler, R. (2020). Integration of reactive oxygen species and hormone signaling during abiotic stress. The Plant Journal, 105(1), 459–476. https://doi.org/10.1111/tpj.15010

Dewi, N. P. Y. A., Angket, S., Ledheng, L., Sele, Y., Weisillana. (2024). Diversity of Orchid Types in the Oeluan Tourism Forest, Bijeli Village, Noemuti District, North Central Timor Regency. Interdiciplinary International Journal of Conservation and Culture, 2(1), 31-38. https://doi.org/10.25157/iijcc.v2i1.3906

Erland, L., Giebelhaus, R., Victor, J. M. R., Murch, S. J., & Saxena, P. K. (2020). The morphoregulatory role of thidiazuron: Metabolomics-guided hypothesis generation for mechanisms of activity. Biomolecules, 10(9), 1–34. https://doi.org/10.3390/biom10091253

Fadón, E., Fernandez, E., Behn, H., & Luedeling, E. (2020). A Conceptual Framework for Winter Dormancy in Deciduous Trees. Agronomy, 10(241), 1–20. https://doi.org/10.3390/agronomy10020241

Fahima, A., Levinkron, S., Maytal, Y., Hugger, A., Lax, I., Huang, X., Eyal, Y., Lichter, A., Goren, M., Stern, R. A., & Harpaz-Saad, S. (2019). Cytokinin treatment modifies litchi fruit pericarp anatomy leading to reduced susceptibility to post-harvest pericarp browning. Plant Science, 283(10), 41–50. https://doi.org/10.1016/j.plantsci.2019.02.006

Feher, A. (2019). Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology?. Front Plant Sci, 10. https://doi.org/10.3389/fpls.2019.00536

Ghahremani, R., Daylami, S. D., Mirmasoumi, M., Askari, N., Vahdati, K. (2021). Refining a Protocol For Somatic Embryogenesis and Plant Regeneration of Phalaenopsis amabilis cv. Jinan from Mature Tissues. Turkish Journal of Agriculture and Forestry, 45(3), 356-364. https://doi.org/10.3906/tar-2004-107

Gulzar, B., Mujib, A., Qadir Malik, M., Sayeed, R., Mamgain, J., & Ejaz, B. (2020). Genes, proteins, and other networks regulating somatic embryogenesis in plants. Journal of Genetic Engineering and Biotechnology, 18(31), 1–15. https://doi.org/10.1186/s43141-020-00047-5

Hernandez, H. A., Rodriguez, M. L., Montalvo, R. N. A., Gomez, Y. L. J., Skeete, A., Montalvo, J. A., Pena, C. D. L., & Vargas, V. M. L. (2019). Signaling Overview of Plant Somatic Embryogenesis. Front. Plant Sci., 10,77. https://doi.org/10.3389/fpls.2019.00077

Hong, Lee, Z., Hirakawa, T., Yamaguchi, N., & Ito, T. (2019). Molecular Sciences The Roles of Plant Hormones and Their Interactions with Regulatory Genes in Determining Meristem Activity. International Journal of Molecular Sciences, 20(4065), 1–19. https://doi.org/10.3390/ijms20164065

Jaiswal, N., Verma, Y., & Misra, P. (2021). High frequency in vitro callogenesis and plant regeneration of Glycyrrhiza glabra L.. Vegetos, 34(3), 495–504. https://doi.org/10.1007/s42535-021-00219-9

Jayusman. (2021). Biotechnologi Propagasi Vegetatif Tanaman Hutan: Keuntungan dan Risiko. Prosiding SNPBS (Seminar Nasional Pendidikan Biologi Dan Saintek), 6(1), 248–257. https://proceedings.ums.ac.id/index.php/snpbs/article/view/40

Kong, E. Y. Y., Biddle, J., Foale, M., & Adkins, S. W. (2020). Cell suspension culture: A potential in vitro culture method for clonal propagation of coconut plantlets via somatic embryogenesis. Industrial Crops and Products, 147(1), 1–19. https://doi.org/10.1016/j.indcrop.2020.112125

Krisdianto, A., Saptiningsih, E., Nurchayati, Y., & Setiari, N. (2020). View of Growth of Phalaenopsis amabilis (L.) Blume Orchid Plantlet on Subculture Stage by Difference of Media Types and Pepton Concentrations. Journal of Biological Sciences, 7(2), 39–47. https://doi.org/10.24843/metamorfosa.2020.v07.i02.p06

Lizawati, L., Zulkarmain, Z., Antony, D., Purnamaningsih, R. (2023). The effect of 2,4-D, BA and Thidiazuron on somatic embryo induction of liberica coffee of Tungkal Composite from Jambi. E3S Web of Conferences 373, 03012. https://doi.org/10.1051/e3sconf/202337303012

Lopez, R. A., Rodriguez, M. L., Contreras, A. S., Avelizapa, L. I. R., Coello, N. G. S., Collado, N. M., Pastrana, R. N. (2022). Inorganic Compounds that Aid in Obtaining Somatic Embryos. Methods Mol Biol, 2527, 203-221. https://doi.org/10.1007/978-1-0716-2485-2_15

Loyola-Vargas, M., Ochoa-Alejo, N., Elhiti, M., & Stasolla, C. (2022). Transduction of Signals during Somatic Embryogenesis. Plants, 11(178), 1–16. https://doi.org/10.3390/plants11020178

Mahendran, G., & Bai, V. N. (2012). Direct somatic embryogenesis and plant regeneration from seed-derived protocorms of Cymbidium bicolor Lindl. Scientia Horticulturae, 135(1), 40–44. https://doi.org/10.1016/j.scienta.2011.12.003

Mihovilovic, A. B., Jercic, I. H., Prebeg, T., Pavicic, I. A., Baric, M., Keresa, S. (2020). Light Source and Cytokinin Type Affect Multiplication Rate, Chlorophyll Content and Stomata Formation of Amelanchier alnifolia Shoots in Vitro. Journal of Central European Agriculture, 21(4), 826-838. https://doi.org/10.5513/JCEA01/21.4.2909

Mose, W., Daryono, B. S., Indrianto, A., Purwanto, A., Semiarti, E. (2020). Direct Somatic Embryogenesis and Regeneration of an Indonesian orchid Phalaenopsis amabilis (L.) Blume under a Variety of Plant Growth Regulators, Light Regime, and Organic Substances. Jordan Journal of Biological Sciences, 13(4), 509-518.

Murgayanti, M., Sumadi, S., & N, R. F. (2020). Multiplikasi tunas kunyit putih (Kaempferia rotunda L.) pada jenis dan konsentrasi sitokinin secara in vitro. Kultivasi, 19(3), 1230–1236. https://doi.org/10.24198/kultivasi.v19i3.29469

Narváez, I., Martín, C., Jiménez-Díaz, R. M., Mercado, J. A., & Pliego-Alfaro, F. (2019). Plant Regeneration via Somatic Embryogenesis in Mature Wild Olive Genotypes Resistant to the Defoliating Pathotype of Verticillium dahliae. Frontiers in Plant Science, 10(1), 1–11. https://doi.org/10.3389/fpls.2019.01471

Pardede, Y., Mursyanti, E., & Sidharta, B. R. (2021). Pengaruh Hormon terhadap Induksi Embrio Somatik Kacapiring (Gardenia jasminoides) dan Potensi Aplikasinya dalam Pembuatan Benih Sintetik. Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati, 6(3), 162–177. https://doi.org/10.24002/biota.v6i3.4093

Permadi, N., Nurzaman, M., Alhasnawi, A. N., Doni, F., Julaeha, E. (2023). Managing Lethal Browning and Microbial Contamination in Musa spp. Tissue Culture: Synthesis and Perspectives. Horticultrae, 9(4), 453. https://doi.org/10.3390/horticulturae9040453

Pratama, F. F., Setiari, N., Nurchayati, Y. (2021). Growth of Cymbidium bicolor Lindl. Plantlet During Subculture With Variation of Media. Jurnal Biologi Udayana, 25, 71-77. https://doi.org/10.24843/JBIOUNUD.2021.v25.i01.p08

Punja, Z. K., Collyer, D., Scott, C., Lung, S., Holmes, J., & Sutton, D. (2019). Pathogens and Molds Affecting Production and Quality of Cannabis sativa L. Frontiers in Plant Science, 10(1120), 1–23. https://doi.org/10.3389/fpls.2019.01120

Pyati, A. N. (2022). In vitro Propagation of orchid (Dendrobium ovatum (L.) Kraenzl.) through Somatic Embryogenesis. Plant Tissue Cult. & Biotech., 32(1), 53-6. https://doi.org/10.3329/ptcb.v32i1.60472

Rahmah, M., Anwar, A., & Swasti, E. (2020). Karamunting (Rhodomyrtus tomentosa) Callus Induction In Vitro. International Journal of Environment, Agriculture and Biotechnology, 5(2), 459–465. https://doi.org/10.22161/ijeab.52.20

Restanto, D. P., Felayati, I., Fanata, W. I. D., Dewanti, P., Kriswanto, B., Khozin, M. N., Prayoga, M. C. (2023). Optimization of TDZ Hormone on the Formation of Somatic Embryogenesis in Dendrobium Orchids (D.50TH Stage Beauty X D. Bobby Mesina). Jurnal Natur Indonesia, 21(1), 42-46. https://doi.org/10.31258/jnat

Rineksane, I. A., Juliarachmi, A. F., Putri, R. K., Astuti, A., & Samidjo, G. S. (2021). Optimization of 2,4-D and Cytokinin Combination for the Growth of Vanda tricolor in Solid and Liquid Medium. IOP Conference Series: Earth and Environmental Science, 752(1), 1–7. https://doi.org/10.1088/1755-1315/752/1/012025

Rostiana, O. (2020). Aplikasi Sitokinin Tipe Purin Dan Urea Pada Multiplikasi Tunas Anis (Pimpinellla anisum L.) In Vitro. Jurnal Penelitian Tanaman Industri, 13(1), 1–7. https://doi.org/10.21082/jlittri.v13n1.2007.1-7

Sumihar, S. T. T., Siahaan, F. R., Pujiastuti, E. S., & Laia, D. A. S. (2021). Leaf Fertilizer as a Source of Nutrients for In Vitro Propagation Culture Media of Banana Raja Bulu (Musa paradisiaca L. cv. Raja Bulu). Jurnal Ilmu Pertanian, 9(2), 89–94.

Syamsiah, M., Imansyah, A. A., Suprapti, H. K., & Badriah, D. S. (2020). Respon Multiplikasi Anggrek Bulan (Phalaenopsis sp.) Terhadap Penambahan BAP(Benzyl Amino Purine) pada Media in vitro. Agroscience (Agsci), 10(2), 148. https://doi.org/10.35194/agsci.v10i2.1157

Vallado, N., Almeida, D., Borges, E., & Carlos, J. (2022). Plant Science Somatic embryogenesis from flower tepals of Hippeastrum aiming regeneration of virus-free plants. Plant Science, 317, 111191. https://doi.org/10.1016/j.plantsci.2022.111191

Wang, S.-L., Kasi Viswanath, K., Tong, C.-G., Ryun An, H., Jang, S., & Chen, F.-C. (2019a). Floral Induction and Flower Development of Orchids. Frontier in Plant Science, 10(1258). https://doi.org/10.3389/fpls.2019.01258

Wang, W., Hao, Q., Wang, W., Li, Q., Chen, F., Ni, F., Wang, Y., Fu, D., Wu, J., & Wang, W. (2019b). The involvement of cytokinin and nitrogen metabolism in delayed flag leaf senescence in a wheat stay-green mutant, tasg1. Plant Science, 278(8), 70–79. https://doi.org/10.1016/j.plantsci.2018.10.024

Wehbi, H., Soulhat, C., Morin, H., Bendahmane, A., Hilson, P., & Bouchabké-Coussa, O. (2022). One-Week Scutellar Somatic Embryogenesis in the Monocot Brachypodium distachyon. Plants, 11(1068), 1–17. https://doi.org/10.3390/plants11081068

Xu, J., Su, Y. H., & Fehér, A. (2019). Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology? Frontiers in Plant Science, 10(536), 1–11. https://doi.org/10.3389/fpls.2019.00536

Yudaputra, A., Munawaroh, E., Usmadi, D., Purnomo, D. W., Astuti, I. P., Puspitaningtyas, D. P., Handayani, T., Garvita, T. R., Aprilianti, P., Wawangningrum, H., Renjana, E., Handini, E., Angio, M. H., Firdiana, E. R., Witono, J. R., Juswara, L. S., Fijridiyanto, I. A., Ariati, S. R., Yuzammi, Sudarmono, Wanda, I. F., Wibowo, A. R. W., Wati, R. K., Hutabarat, P. W. K., Raharjo, P. D., Solihah, S. M., Saputra, R., Cropper, W. P. (2024). Vulnerability of Lowland and Upland Orchids in Their Spatially Response to Climate Change and Land Cover hange. Ecological Informatics, 80, 102534. https://doi.org/10.1016/j.ecoinf.2024.102534

Yuniati & Isda, M. N. (2024). Combination of Thidiazuron and Basal Media Type on Optimizing in vitro Growth of Grammatophyllum stapeliiflorum Orchid. Jurnal Ilmiah Pertanian, 21(1), 21-32. https://doi.org/10.31849/jip.v21i1.12829

Zhao, J., Wang, J., Liu, J., Zhang, P., Kudoyarova, G., Liu, C. J., Zhang, K. (2024). Spatially distributed cytokinins: Metabolism, signaling, and transport. Plant Communications, 5(7), 2590-3462, https://doi.org/10.1016/j.xplc.2024.100936

Zhao, S., Wang, H., Liu, K., Li, L., Yang, J., An, X., Li, P., Yun, L., & Zhang, Z. (2021). The role of JrPPOs in the browning of walnut explants. BMC Plant Biology, 21(1), 1–12. https://doi.org/10.1186/s12870-020-02768-8

Downloads

Published

2025-02-25

Issue

Section

Articles