Application of Empty Fruit Bunches of Oil Palm and Indigofera zollingeriana for Conservation of Oil Palm Plantation

Saijo Saijo, Sudradjat Sudradjat, Sudirman Yahya, Yayat Hidayat, Pienyani Rosawanti

Abstract


Oil palm empty fruit bunches are materials used as organic fertilizers that can be applied to oil palm plantations, thereby reducing the use of inorganic fertilizers. Indigofera zollingeriana is an appropriate alternative as an interplant because of its high branch and leaf development. Functions as a ground cover and a supplier of carbon stocks naturally plays a role in water and soil conservation. This study aims to determine the effect of oil palm empty fruit bunches and I. zollingeriana on land improvement to support oil palm growth and production. Variables observed included changes in soil water content, soil microorganism activity, and carbon stock. The results showed that the soil planted with I. zollingeriana and given the empty fruit bunches of oil palm had a higher soil moisture content. The highest soil carbon stock, oil palm carbon stock, and vegetation carbon stock were 81.6 t ha-1, 36.60 t ha-1, and 1.89 t ha-1, respectively. The population and activity of microorganisms varies. The highest total microorganisms were treated with I. zollingeriana and oil palm EFB 105 (10⁵CFU g-1), while the lowest was 60 (10⁵CFU g-1). Planting I. zollingeriana and providing oil palm empty fruit bunches increased groundwater reserves by 36.71%.


Keywords


Carbon stock; Indigofera zollingeriana; Microorganisms

Full Text:

PDF

References


Agus, F. (2011). Pengukuran cadangan karbon tanah gambut. Balai Penelitian Tanah, BALITBANGTAN-Kementrian Pertanian Indonesia. http://balittanah.litbang.pertanian.go.id

Asbur, Y. & M. Ariyanti. (2017). Peran konservasi tanah terhadap cadangan karbon tanah, bahan organik, dan pertumbuhan kelapa sawit (Elaeis guineensis jacq.) Jurnal Kultivasi Vol. 16 (3) Desember 2017 (402-411) https://doi.org/10.24198/kultivasi.v16i3.14446

Azham, Z. (2015). Estimasi cadangan karbon pada tutupan lahan hutan sekunder, semak dan belukar di kota samarinda. Agrifor: Jurnal Ilmu Pertanian Dan Kehutanan, 14(2), 325–338.

Broughton, L. C., & Gross, K. L. (2000). Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field. Oecologia, 125(3), 420–427. https://doi.org/10.1007/s004420000456

Cesarz, S., Fender, A.-C., Beyer, F., Valtanen, K., Pfeiffer, B., Gansert, D., Hertel, D., Polle, A., Daniel, R., & Leuschner, C. (2013). Roots from beech (Fagus sylvatica L.) and ash (Fraxinus excelsior L.) differentially affect soil microorganisms and carbon dynamics. Soil Biology and Biochemistry, 61, 23–32. https://doi.org/10.1016/j.soilbio.2013.02.003

Danmanhuri, M. A. (1998). Hands-on experience in the production of empty fruit bunches (EFB) compost. CETDEM Malaysian Organic Farming Seminar. Petaling, Jaya, Selangor, Malaysia, 50–61.

Friedel, J. K., Gabel, D., & Stahr, K. (2001). Nitrogen pools and turnover in arable soils under different durations of organic farming: II: Source‐and‐sink function of the soil microbial biomass or competition with growing plants? Journal of Plant Nutrition and Soil Science, 164(4), 421–429. https://doi.org/10.1002/1522-2624(200108)164:4<421::AID-JPLN421>3.0.CO;2-P

Gaind, S., & Nain, L. (2007). Chemical and biological properties of wheat soil in response to paddy straw incorporation and its biodegradation by fungal inoculants. Biodegradation, 18(4), 495–503. https://doi.org/10.1007/s10532-006-9082-6

Gessner, M. O., Swan, C. M., Dang, C. K., McKie, B. G., Bardgett, R. D., Wall, D. H., & Hättenschwiler, S. (2010). Diversity meets decomposition. Trends in Ecology & Evolution, 25(6), 372–380. https://doi.org/10.1016/j.tree.2010.01.010

Goh, Kahjoo & Härdter, Rolf. (2003). General oil palm nutrition. Oil Palm: Management for Large and Sustainable Yields. 191-230.

Hairiah K, Ekadinata A, Sari RR, Rahayu S. 2011. Pengukuran Cadangan Karbon: dari tingkat lahan ke bentang lahan. Petunjuk praktis. Edisi kedua. Bogor, World Agroforestry Centre, ICRAF SEA Regional Office, University of Brawijaya (UB), Malang, Indonesia xx p.

Hairiah K, Sitompul SM, van Noordwijk M and Palm, C. (2001). “Carbon Stocks of Tropical Land Use Systems as Part of the Global C Balance: Effects of Forest Conversion and Options for ‘Clean Development’ Activities. ASB Lecture Note 4A,World Agroforestry Centre - ICRAF, SEA Regional Office, Bogor, Indonesia. https://www.asb.cgiar.org/

Hassen A, Van Niekerk WA, Rethman NFG, Tjelele TJ. (2006). Intake and in vivo digestibility of indigofera forage compared to medicago sativa and leucaena leucocephala by sheep. South African Journal of Animal Science. 36 (5): 67-70.

Henson, I. E., Noor, M. R. M. D., Harun, M. H., Yahya, Z., & Mustakim, S. N. A. (2005). Stress development and its detection in young oil palm in north kedah, malaysia. Journal of Oil Palm Research, 17(N), 11.

Hobbs, P. R. (2007). Conservation agriculture: what is it and why is it important for future sustainable food production? JOURNAL OF AGRICULTURAL SCIENCE-CAMBRIDGE-, 145(2), 127. https://doi.org/10.1017/S0021859607006892

Kallarackal, J., Jeyakumar, P., & George, S. J. (2004). Water use of irrigated oil palm at three different arid locations in Peninsular India. Journal of Oil Palm Research, 16, 45–53.

Kassam, A., Friedrich, T., Derpsch, R., Lahmar, R., Mrabet, R., Basch, G., González-Sánchez, E. J., & Serraj, R. (2012). Conservation agriculture in the dry Mediterranean climate. Field Crops Research, 132, 7–17. https://doi.org/10.1016/j.fcr.2012.02.023

Malý, S., Korthals, G. W., Van Dijk, C., Van der Putten, W. H., & De Boer, W. (2000). Effect of vegetation manipulation of abandoned arable land on soil microbial properties. Biology and Fertility of Soils, 31(2), 121–127. https://doi.org/10.1007/s003740050634

Mohammad, N., Alam, M. Z., Kabbashi, N. A., & Ahsan, A. (2012). Effective composting of oil palm industrial waste by filamentous fungi: A review. Resources, Conservation and Recycling, 58, 69–78. https://doi.org/10.1016/j.resconrec.2011.10.009

Ohkura, T., Yokoi, Y., & Imai, H. (2003). Variations in soil organic carbon in Japanese arable lands. p 273-280. Soil Organic Carbon and Agriculture: Developing Indicators for Policy Analyses. Proceedings of an OECD Expert Meeting, Ottawa Canada. https://doi.org/10.1016/j.resconrec.2011.10.009

Pansak, W., Hilger, T. H., Dercon, G., Kongkaew, T., & Cadisch, G. (2008). Changes in the relationship between soil erosion and N loss pathways after establishing soil conservation systems in uplands of Northeast Thailand. Agriculture, Ecosystems & Environment, 128(3), 167–176. https://doi.org/10.1016/j.agee.2008.06.002

Pietika,¨J. Inen, Marie Pettersson a, Erland Ba˚a˚th a. (2005). Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiology Ecology, Volume 52, Issue 1, March 2005, Pages 49–58. https://doi.org/10.1016/j.femsec.2004.10.002

Robert, M. (2001). Soil carbon sequestration for improved land management. Food and Agriculture Organization of the United Nations. https://www.fao.org/

Saijo, S., Yahya, S., & Hidayat, Y. (2018). Adaptasi Tanaman Indigofera zollingeriana zollingeriana (Miquel 1855)(Leguminosae: Indigofereae) pada Berbagai Tingkat Naungan. Jurnal Ilmu Pertanian Indonesia, 23(3), 240–245. https://doi.org/10.18343/jipi.23.3.240

Sihombing, P.R. & Arsani, A.M. (2022). Aplikasi Minitab untuk Statististik Pemula. Gemala. Depok. Indonesia.

Shafi, M., Bakht, J., Jan, M. T., & Shah, Z. (2007). Soil C and N dynamics and maize (Zea may L.) yield as affected by cropping systems and residue management in North-western Pakistan. Soil and Tillage Research, 94(2), 520–529. https://doi.org/10.1016/j.still.2006.10.002

Steel Robert GD, Turie JH. (1993). Principles and procedures of statistick-a biometrical apprroach. Mc Graw-Hill Book Compan. New York.

Umana, C. W., & Chinchille, C. M. (1991). Symptomatology associated with water deficit in oil palm. ASD Oil Palm Paper, 3, 1–4. https://doi.org/10.1007/s11427-013-4486-0

Wang, M., Qu, L., Ma, K., & Yuan, X. (2013). Soil microbial properties under different vegetation types on Mountain Han. Science China Life Sciences, 56(6), 561–570. https://doi.org/10.1007/s11427-013-4486-0




DOI: https://doi.org/10.18196/pt.v10i2.15467

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Saijo, Sudradjat, Sudirman Yahya, Yayat Hidayat, Pienyani Rosawanti

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





 

Editorial Office
Planta Tropika
Department of Agrotechnology, Faculty of Agriculture, Universitas Muhammadiyah Yogyakarta
Jl. Brawijaya, Tamantirto, Kasihan, Bantul, D.I. Yogyakarta, Indonesia
Phone: +62 274 387656, Ext.: 224 / +62 81329320575
Email: plantatropika@umy.ac.id
E-ISSN: 2528-7079
p-ISSN: 0216-499X

 

Creative Commons License
Planta Tropika is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.