Application of Empty Fruit Bunches of Oil Palm and Indigofera zollingeriana for Conservation of Oil Palm Plantation
DOI:
https://doi.org/10.18196/pt.v10i2.15467Keywords:
Carbon stock, Indigofera zollingeriana, MicroorganismsAbstract
Oil palm empty fruit bunches are materials used as organic fertilizers that can be applied to oil palm plantations, thereby reducing the use of inorganic fertilizers. Indigofera zollingeriana is an appropriate alternative as an interplant because of its high branch and leaf development. Functions as a ground cover and a supplier of carbon stocks naturally plays a role in water and soil conservation. This study aims to determine the effect of oil palm empty fruit bunches and I. zollingeriana on land improvement to support oil palm growth and production. Variables observed included changes in soil water content, soil microorganism activity, and carbon stock. The results showed that the soil planted with I. zollingeriana and given the empty fruit bunches of oil palm had a higher soil moisture content. The highest soil carbon stock, oil palm carbon stock, and vegetation carbon stock were 81.6 t ha-1, 36.60 t ha-1, and 1.89 t ha-1, respectively. The population and activity of microorganisms varies. The highest total microorganisms were treated with I. zollingeriana and oil palm EFB 105 (10⁵CFU g-1), while the lowest was 60 (10⁵CFU g-1). Planting I. zollingeriana and providing oil palm empty fruit bunches increased groundwater reserves by 36.71%.
References
Agus, F. (2011). Pengukuran cadangan karbon tanah gambut. Balai Penelitian Tanah, BALITBANGTAN-Kementrian Pertanian Indonesia. http://balittanah.litbang.pertanian.go.id
Asbur, Y. & M. Ariyanti. (2017). Peran konservasi tanah terhadap cadangan karbon tanah, bahan organik, dan pertumbuhan kelapa sawit (Elaeis guineensis jacq.) Jurnal Kultivasi Vol. 16 (3) Desember 2017 (402-411) https://doi.org/10.24198/kultivasi.v16i3.14446
Azham, Z. (2015). Estimasi cadangan karbon pada tutupan lahan hutan sekunder, semak dan belukar di kota samarinda. Agrifor: Jurnal Ilmu Pertanian Dan Kehutanan, 14(2), 325–338.
Broughton, L. C., & Gross, K. L. (2000). Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field. Oecologia, 125(3), 420–427. https://doi.org/10.1007/s004420000456
Cesarz, S., Fender, A.-C., Beyer, F., Valtanen, K., Pfeiffer, B., Gansert, D., Hertel, D., Polle, A., Daniel, R., & Leuschner, C. (2013). Roots from beech (Fagus sylvatica L.) and ash (Fraxinus excelsior L.) differentially affect soil microorganisms and carbon dynamics. Soil Biology and Biochemistry, 61, 23–32. https://doi.org/10.1016/j.soilbio.2013.02.003
Danmanhuri, M. A. (1998). Hands-on experience in the production of empty fruit bunches (EFB) compost. CETDEM Malaysian Organic Farming Seminar. Petaling, Jaya, Selangor, Malaysia, 50–61.
Friedel, J. K., Gabel, D., & Stahr, K. (2001). Nitrogen pools and turnover in arable soils under different durations of organic farming: II: Source‐and‐sink function of the soil microbial biomass or competition with growing plants? Journal of Plant Nutrition and Soil Science, 164(4), 421–429. https://doi.org/10.1002/1522-2624(200108)164:4<421::AID-JPLN421>3.0.CO;2-P
Gaind, S., & Nain, L. (2007). Chemical and biological properties of wheat soil in response to paddy straw incorporation and its biodegradation by fungal inoculants. Biodegradation, 18(4), 495–503. https://doi.org/10.1007/s10532-006-9082-6
Gessner, M. O., Swan, C. M., Dang, C. K., McKie, B. G., Bardgett, R. D., Wall, D. H., & Hättenschwiler, S. (2010). Diversity meets decomposition. Trends in Ecology & Evolution, 25(6), 372–380. https://doi.org/10.1016/j.tree.2010.01.010
Goh, Kahjoo & Härdter, Rolf. (2003). General oil palm nutrition. Oil Palm: Management for Large and Sustainable Yields. 191-230.
Hairiah K, Ekadinata A, Sari RR, Rahayu S. 2011. Pengukuran Cadangan Karbon: dari tingkat lahan ke bentang lahan. Petunjuk praktis. Edisi kedua. Bogor, World Agroforestry Centre, ICRAF SEA Regional Office, University of Brawijaya (UB), Malang, Indonesia xx p.
Hairiah K, Sitompul SM, van Noordwijk M and Palm, C. (2001). “Carbon Stocks of Tropical Land Use Systems as Part of the Global C Balance: Effects of Forest Conversion and Options for ‘Clean Development’ Activities. ASB Lecture Note 4A,World Agroforestry Centre - ICRAF, SEA Regional Office, Bogor, Indonesia. https://www.asb.cgiar.org/
Hassen A, Van Niekerk WA, Rethman NFG, Tjelele TJ. (2006). Intake and in vivo digestibility of indigofera forage compared to medicago sativa and leucaena leucocephala by sheep. South African Journal of Animal Science. 36 (5): 67-70.
Henson, I. E., Noor, M. R. M. D., Harun, M. H., Yahya, Z., & Mustakim, S. N. A. (2005). Stress development and its detection in young oil palm in north kedah, malaysia. Journal of Oil Palm Research, 17(N), 11.
Hobbs, P. R. (2007). Conservation agriculture: what is it and why is it important for future sustainable food production? JOURNAL OF AGRICULTURAL SCIENCE-CAMBRIDGE-, 145(2), 127. https://doi.org/10.1017/S0021859607006892
Kallarackal, J., Jeyakumar, P., & George, S. J. (2004). Water use of irrigated oil palm at three different arid locations in Peninsular India. Journal of Oil Palm Research, 16, 45–53.
Kassam, A., Friedrich, T., Derpsch, R., Lahmar, R., Mrabet, R., Basch, G., González-Sánchez, E. J., & Serraj, R. (2012). Conservation agriculture in the dry Mediterranean climate. Field Crops Research, 132, 7–17. https://doi.org/10.1016/j.fcr.2012.02.023
Malý, S., Korthals, G. W., Van Dijk, C., Van der Putten, W. H., & De Boer, W. (2000). Effect of vegetation manipulation of abandoned arable land on soil microbial properties. Biology and Fertility of Soils, 31(2), 121–127. https://doi.org/10.1007/s003740050634
Mohammad, N., Alam, M. Z., Kabbashi, N. A., & Ahsan, A. (2012). Effective composting of oil palm industrial waste by filamentous fungi: A review. Resources, Conservation and Recycling, 58, 69–78. https://doi.org/10.1016/j.resconrec.2011.10.009
Ohkura, T., Yokoi, Y., & Imai, H. (2003). Variations in soil organic carbon in Japanese arable lands. p 273-280. Soil Organic Carbon and Agriculture: Developing Indicators for Policy Analyses. Proceedings of an OECD Expert Meeting, Ottawa Canada. https://doi.org/10.1016/j.resconrec.2011.10.009
Pansak, W., Hilger, T. H., Dercon, G., Kongkaew, T., & Cadisch, G. (2008). Changes in the relationship between soil erosion and N loss pathways after establishing soil conservation systems in uplands of Northeast Thailand. Agriculture, Ecosystems & Environment, 128(3), 167–176. https://doi.org/10.1016/j.agee.2008.06.002
Pietika,¨J. Inen, Marie Pettersson a, Erland Ba˚a˚th a. (2005). Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiology Ecology, Volume 52, Issue 1, March 2005, Pages 49–58. https://doi.org/10.1016/j.femsec.2004.10.002
Robert, M. (2001). Soil carbon sequestration for improved land management. Food and Agriculture Organization of the United Nations. https://www.fao.org/
Saijo, S., Yahya, S., & Hidayat, Y. (2018). Adaptasi Tanaman Indigofera zollingeriana zollingeriana (Miquel 1855)(Leguminosae: Indigofereae) pada Berbagai Tingkat Naungan. Jurnal Ilmu Pertanian Indonesia, 23(3), 240–245. https://doi.org/10.18343/jipi.23.3.240
Sihombing, P.R. & Arsani, A.M. (2022). Aplikasi Minitab untuk Statististik Pemula. Gemala. Depok. Indonesia.
Shafi, M., Bakht, J., Jan, M. T., & Shah, Z. (2007). Soil C and N dynamics and maize (Zea may L.) yield as affected by cropping systems and residue management in North-western Pakistan. Soil and Tillage Research, 94(2), 520–529. https://doi.org/10.1016/j.still.2006.10.002
Steel Robert GD, Turie JH. (1993). Principles and procedures of statistick-a biometrical apprroach. Mc Graw-Hill Book Compan. New York.
Umana, C. W., & Chinchille, C. M. (1991). Symptomatology associated with water deficit in oil palm. ASD Oil Palm Paper, 3, 1–4. https://doi.org/10.1007/s11427-013-4486-0
Wang, M., Qu, L., Ma, K., & Yuan, X. (2013). Soil microbial properties under different vegetation types on Mountain Han. Science China Life Sciences, 56(6), 561–570. https://doi.org/10.1007/s11427-013-4486-0
Downloads
Published
Issue
Section
License
PLANTA TROPIKA is committed to its authors to protect and defend their work and their reputation and takes allegations of infringement, plagiarism, ethical disputes, and fraud very seriously. PLANTA TROPIKA is published under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Authors retain copyright and grant the journal right of first publication (online and print) with the work simultaneously.
LICENSE
1. License to Publish
The non-commercial use of the article will be governed by the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). The author hereby grants PLANTA TROPIKA an exclusive publishing and distribution license in the manuscript include tables, illustrations or other material submitted for publication as part of the manuscript (the “Article”) in print, electronic and all other media (whether now known or later developed), in any form, in all languages, throughout the world, for the full term of copyright, and the right to license others to do the same, effective when the article is accepted for publication. This license includes the right to enforce the rights granted hereunder against third parties.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
Under the Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0) license, the author(s) and users are free to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material). Users must give appropriate credit, provide a link to the license, and indicate if changes were made.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale, and
- The right to self-archive the article.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by PLANTA TROPIKA or its sublicensee.
7. Miscellaneous
PLANTA TROPIKA will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and PLANTA TROPIKA or its sublicensee has become obligated to have the article published. PLANTA TROPIKA may conform the article to a style of punctuation, spelling, capitalization, and usage that it deems appropriate.