Growth and Yield Performance of Upland and Lowland Rice Varieties Under Narrow-Wide Row Planting Systems in East Nusa Tenggara, Indonesia
DOI:
https://doi.org/10.18196/pt.v11i1.15921Keywords:
Grain yield, Inpago 8, Inpago 12, Jajar legowo, Planting systemsAbstract
Appropriate plant spacing and new superior rice varieties are essential factors in achieving high yields. This study aimed to evaluate rice varieties and jajar legowo planting systems that increase growth and yield during the dry season in East Nusa Tenggara. The research was arranged in a split plot in a randomized complete block design with two replications. The rice varieties (main plot) consisted of upland rice (Inpago 8 and Inpago 12) and lowland rice (Inpari 32 and Ciherang). The planting systems (sub-plot) consisted of a square system 20 cm × 20 cm, jajar legowo 2:1 (30 – 60) cm × 15 cm, jajar legowo 2:1 (25 – 50) cm × 12.5 cm, jajar legowo 2:1 (20 – 40) cm × 10 cm, and jajar legowo 4:1 (20 – 40) cm × 10 cm. The results indicated that Inpago 12 planted with the jajar legowo 2:1 (25 – 50) cm × 12.5 cm resulted in higher growth and yield than those planted with the square system. All tested varieties were not significantly different, while the planting systems were statistically different. The planting system of jajar legowo 2:1 (25 – 50) cm × 12.5 cm obtained higher growth and yield than other planting systems.
References
Abdulrachman, S., Mejaya, M. J., Agustiani, N., Gunawan, I., Sasmita, P., & Guswara, A. (2013). Sistem Tanam Legowo. Badan Penelitian dan Pengembangan Pertanian-Kementerian Pertanian.
Aklilu, E. (2020). Effect of seed rate and row spacing on yield and yield components of upland rice (Oryza sativa L.) in Metema, West Gondar, Ethiopia. American Journal of Agriculture and Forestry, 8(4), 112. https://doi.org/10.11648/j.ajaf.20200804.14
Amanah, A., Utami, S. N. H., & Nuruddin, M. (2017). Effect of planting distance on nitrogen uptake and productivity of paddy Var. Rojolele irradiated with gamma rays in Inceptisol. Ilmu Pertanian (Agricultural Science), 2(2), 70–78. https://doi.org/10.22146/ipas.17236
Asnawi, R., Arief, R. W., Slameto, Tambunan, R. D., Martias, Mejaya, M. J., & Fitriani. (2021). Increasing rice (Oryza sativa L.) productivity and farmer's income through the implementation of modified double rows planting system. Annual Research & Review in Biology, 36(8), 42–52. https://doi.org/10.9734/arrb/2021/v36i830409
Bernier, J., Atlin, G. N., Serraj, R., Kumar, A., & Spaner, D. (2008). Breeding upland rice for drought resistance. Journal of the Science of Food and Agriculture, 88(6), 927–939. https://doi.org/10.1002/jsfa.3153
BPS-Statistics of Nusa Tenggara Timur Province. (2022). Nusa Tenggara Timur Province in Figures 2022. BPS-Statistics of Nusa Tenggara Timur Province. https://ntt.bps.go.id/publication/2022/02/25/cc3b48ec498e16518636e415/provinsi-nusa-tenggara-timur-dalam-angka-2022.html
Caine, R. S., Yin, X., Sloan, J., Harrison, E. L., Mohammed, U., Fulton, T., Biswal, A. K., Dionora, J., Chater, C. C., Coe, R. A., Bandyopadhyay, A., Murchie, E. H., Swarup, R., Quick, W. P., & Gray, J. E. (2019). Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytologist, 221(1), 371–384. https://doi.org/10.1111/nph.15344
Erythrina, & Zaini, Z. (2013). Indonesia Ricecheck Procedure: An approach for accelerating the adoption of ICM. Palawija, 30(1), 6–8.
Eviati, & Sulaeman. (2009). Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. Balai Penelitian Tanah.
Gardner, F. P., Pearce, R. B., & Mitchel, R. L. (1991). Fisiologi Tanaman Budidaya. UI Press.
Hafni, T., Zakaria, S., & Kesumawati, E. (2019). Daya adaptasi beberapa varietas padi gogo (Oryza sativa L.) pada tingkat naungan yang berbeda. Jurnal Agrista, 23(3), 145–158.
Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Zhuang, H., Cheng, F., Zhang, J., & Tao, F. (2022). Annual paddy rice planting area and cropping intensity datasets and their dynamics in the Asian monsoon region from 2000 to 2020. Agricultural Systems, 200, 103437. https://doi.org/10.1016/j.agsy.2022.103437
Kaziu, I., Kashta, F., & Celami, A. (2019). Estimation of grain yield, grain components and correlations between them in some oat cultivars. Albanian Journal of Agricultural Sciences, 18(1), 13–19.
Khairullah, I., Annisa, W., Subagio, H., & Sosiawan, H. (2021). Effects of cropping system and varieties on the rice growth and yield in acid sulphate soils of tidal swampland. Ilmu Pertanian (Agricultural Science), 6(3), 163–174. https://doi.org/10.22146/ipas.62041
Komatsu, S., Saito, K., & Sakurai, T. (2022). Changes in production, yields, and the cropped area of lowland rice over the last 20 years and factors affecting their variations in Côte d′Ivoire. Field Crops Research, 277, 108424. https://doi.org/10.1016/j.fcr.2021.108424
Liu, K., Deng, J., Lu, J., Wang, X., Lu, B., Tian, X., & Zhang, Y. (2019). High nitrogen levels alleviate yield loss of super hybrid rice caused by high temperatures during the flowering stage. Frontiers in Plant Science, 10, 357. https://doi.org/10.3389/fpls.2019.00357
Makarim, A. K., Abdulrachman, S., Ikhwani, Agustiani, N., Margaret, S., Wahab, Moh. I., Rachmat, R., & Guswara, A. (2017). Teknik Ubinan Pendugaan Produktivitas Padi Menurut Sistem Tanam. Balai Besar Penelitian Tanaman Padi.
Megasari, R., Darmawan, M., Sjahril, R., Riadi, M., & Pertiwi, E. D. (2020). Pengujian sistem tanam legowo terhadap hasil padi gogo. AGRIUM: Jurnal Ilmu Pertanian, 23(1), 56–60. https://doi.org/10.30596/agrium.v21i3.2456
Melandri, G., AbdElgawad, H., Floková, K., Jamar, D. C., Asard, H., Beemster, G. T. S., Ruyter-Spira, C., & Bouwmeester, H. J. (2021). Drought tolerance in selected aerobic and upland rice varieties is driven by different metabolic and antioxidative responses. Planta, 254(1), 13. https://doi.org/10.1007/s00425-021-03659-4
OECD/FAO. (2021). OECD-FAO Agricultural Outlook 2021-2030. OECD. https://doi.org/10.1787/19428846-en
Paulina, U., Syarif, A., & Anwar, A. (2020). Strategy for development of rice sawah culture planting in Jarwo plants with various modification of plant distance. International Journal of Environment, Agriculture and Biotechnology, 5(1), 174–180. https://doi.org/10.22161/ijeab.51.25
Phapumma, A., Monkham, T., Chankaew, S., Kaewpradit, W., Harakotr, P., & Sanitchon, J. (2020). Characterization of indigenous upland rice varieties for high yield potential and grain quality characters under rainfed conditions in Thailand. Annals of Agricultural Sciences, 65(2), 179–187. https://doi.org/10.1016/j.aoas.2020.09.004
Purwanto, O. D., Palobo, F., & Tirajoh, S. (2020). Growth and yield of superior rice (Oryza sativa L.) varieties on different planting systems in Papua, Indonesia. SVU-International Journal of Agricultural Sciences, 2(2), 242–255. https://doi.org/10.21608/svuijas.2020.40825.1031
Saito, K., Asai, H., Zhao, D., Laborte, A. G., & Grenier, C. (2018). Progress in varietal improvement for increasing upland rice productivity in the tropics. Plant Production Science, 21(3), 145–158. https://doi.org/10.1080/1343943X.2018.1459751
Sandar, M. M., Ruangsiri, M., Chutteang, C., Arunyanark, A., Toojinda, T., & Siangliw, J. L. (2022). Root characterization of Myanmar upland and lowland rice in relation to agronomic and physiological traits under drought stress condition. Agronomy, 12(5), 1230. https://doi.org/10.3390/agronomy12051230
Sartika, Y., Syarif, A., & Dwipa, I. (2021). Effect of silica fertilizer to growth and yield of rice (Oryza sativa L.) in jajar legowo method. Asian Journal of Research in Crop Science, 6(1), 1–8. https://doi.org/10.9734/ajrcs/2021/v6i130106
Siregar, A. Z. (2018). The growth production paddy and Tilapia sp with legowo row planting system support of security food and maritime in Indonesia. Proceedings of the 3rd International Conference of Computer, Environment, Agriculture, Social Science, Health Science, Engineering and Technology, 388–395. https://doi.org/10.5220/0010043503880395
Suhendrata, T. (2017). Pengaruh jarak tanam pada sistem tanam jajar legowo terhadap pertumbuhan, produktivitas dan pendapatan petani padi sawah di Kabupaten Sragen Jawa Tengah. SEPA: Jurnal Sosial Ekonomi Pertanian Dan Agribisnis, 13(2), 188–194. https://doi.org/10.20961/sepa.v13i2.21030
Suryaningndari, D., Indradewa, D., Kurniasih, B., & Sulistyaningsih, E. (2018). Effect of cropping pattern and fertilizer dose applied in raised-bed on the growth and yield of rice (Oryza sativa L.) in sunken-bed of the surjan rice field. Ilmu Pertanian (Agricultural Science), 3(2), 96–102. https://doi.org/10.22146/ipas.31420
Susilastuti, D., Aditiameri, A., & Buchori, U. (2018). The effect of jajar legowo planting system on Ciherang paddy varieties. AGRITROPICA : Journal of Agricultural Sciences, 1(1), 1–8. https://doi.org/10.31186/j.agritropica.1.1.1-8
Suweta, I. K., Yatim, H., & Sataral, M. (2021). Growth and yield of rice fields with posbidik compost and jajar legowo planting system. CELEBES Agricultural, 2(1), 1–9. https://doi.org/10.52045/jca.v2i1.177
Taridala, S. A. A., Abdullah, W. G., Tuwo, M. A., Bafadal, A., Fausayana, I., Salam, I., Wahyuni, S., & Suaib. (2019). Exploration of the potential of upland rice agribusiness development in South Konawe District, Southeast Sulawesi. IOP Conference Series: Earth and Environmental Science, 260(1), 012011. https://doi.org/10.1088/1755-1315/260/1/012011
Tränkner, M., Tavakol, E., & Jákli, B. (2018). Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 163(3), 414–431. https://doi.org/10.1111/ppl.12747
Tsujimoto, Y., Sakata, M., Raharinivo, V., Tanaka, J. P., & Takai, T. (2021). AZ-97 (Oryza sativa ssp. Indica) exhibits superior biomass production by maintaining the tiller numbers, leaf width, and leaf elongation rate under phosphorus deficiency. Plant Production Science, 24(1), 41–51. https://doi.org/10.1080/1343943X.2020.1808026
Zhang, Y., Xu, J., Cheng, Y., Wang, C., Liu, G., & Yang, J. (2020). The effects of water and nitrogen on the roots and yield of upland and paddy rice. Journal of Integrative Agriculture, 19(5), 1363–1374. https://doi.org/10.1016/S2095-3119(19)62811-X
Downloads
Additional Files
Published
Issue
Section
License
PLANTA TROPIKA is committed to its authors to protect and defend their work and their reputation and takes allegations of infringement, plagiarism, ethical disputes, and fraud very seriously. PLANTA TROPIKA is published under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Authors retain copyright and grant the journal right of first publication (online and print) with the work simultaneously.
LICENSE
1. License to Publish
The non-commercial use of the article will be governed by the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). The author hereby grants PLANTA TROPIKA an exclusive publishing and distribution license in the manuscript include tables, illustrations or other material submitted for publication as part of the manuscript (the “Article”) in print, electronic and all other media (whether now known or later developed), in any form, in all languages, throughout the world, for the full term of copyright, and the right to license others to do the same, effective when the article is accepted for publication. This license includes the right to enforce the rights granted hereunder against third parties.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
Under the Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0) license, the author(s) and users are free to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material). Users must give appropriate credit, provide a link to the license, and indicate if changes were made.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale, and
- The right to self-archive the article.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by PLANTA TROPIKA or its sublicensee.
7. Miscellaneous
PLANTA TROPIKA will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and PLANTA TROPIKA or its sublicensee has become obligated to have the article published. PLANTA TROPIKA may conform the article to a style of punctuation, spelling, capitalization, and usage that it deems appropriate.