Genetic Diversity of Ramie (Boehmeria Nivea L. Gaudich.) Originating from Wonosobo and Malang Based on Simple Sequence Repeat (SSR) Molecular Markers

Annisa Annisa, Widya Nur Pangestu, Joko Kusmoro, Budi Irawan

Abstract


Ramie has been widely used as a fiber crop for over 4000 years. The fibers are durable, white in color, and smooth in texture. Information on genetic diversity is important for selecting good breeding materials to produce superior offspring. This study aimed at determining the genetic diversity of Boehmeria nivea (L.) Gaudich. from Wonosobo and Malang using SSR as molecular markers. Nineteen accessions of ramie were analyzed for genetic diversity using 9 SSRs located adjacent to the gene associated with fiber yield traits. This study included the DNA extraction, amplification, and visualization of amplification. Data analysis included the allele number, frequency, PIC value, heterozygosity, Shannon information index, and AMOVA analysis. The results showed 229 alleles, with an average polymorphic percentage of 68.67%, the average allele frequency ranging from 0.07 to 0.11, an average PIC value of 0.84, and Jaccard's similarity score of 0-0.18. The He and Ho values in both populations were 0.719 and 0.278, respectively. AMOVA analysis revealed that 88% of the observed molecular variance was due to genetic differences within the population, whereas 12% of genetic variation was partitioned between populations. The present study showed high genetic diversity between Wonosobo and Malang ramie. This finding might support further programs for the fiber and biomaterial industry.


Keywords


Diversity; DNA; Genetic; Ramie; SSR

Full Text:

PDF

References


Aiello, D., Ferradini, N., Torelli, L., Volpi, C., Lambalk, J., Russi, L., & Albertini, E. (2020). Evaluation of cross-species transferability of SSR markers in Foeniculum vulgare. Plants, 9(2). https://doi.org/10.3390/plants9020175

Alhariri, A., Behera, T. K., Jat, G. S., Devi, M. B., Boopalakrishnan, G., Hemeda, N. F., Teleb, A. A., Ismail, E., & Elkordy, A. (2021). Analysis of genetic diversity and population structure in bitter gourd (Momordica charantia l.) using morphological and SSR markers. Plants, 10(9). https://doi.org/10.3390/plants10091860

Amani, J., Kazemi, R., & Hatef Salmanian, A. (2011). A simple and rapid leaf genomic DNA extraction method for polymerase chain reaction analysis Design and evaluation of chimeric gene construct in order to make a polytope DNA vaccine candidate against Human cytomegalovirus View project nothing View project. Iranian Journal of Biotechnology, 9(1), 69-71.

Berry, D. A., Wright, D., Xie, C., Seltzer, J. D., & Smith, J. S. C. (2005). Using molecular sizes of simple sequence repeats vs. discrete binned data in assessing probability of ancestry: Application to maize hybrids. Genetics, 170(1), 365–374. https://doi.org/10.1534/genetics.103.022061

Botstein, D., White, R. L., Skolnick, M., & Davis4, R. W. (1980). Construction of a Genetic Linkage Map in Man Using Restriction Fragment Length Polymorphisms. In Am JHum Genet, 32(3), 314–331.

Chase, M. W., & Hills, H. H. (1991). Silica Gel: An Ideal Material for Field Preservation of Leaf Samples for DNA Studies. Taxon, 40(2), 215–220.

Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. In Australian Journal of Ecology {,l99i (Vol. 18). https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

Desai, H., Hamid, R., Ghorbanzadeh, Z., Bhut, N., Padhiyar, S. M., Kheni, J., & Tomar, R. S. (2021). Genic microsatellite marker characterization and development in little millet (Panicum sumatrense) using transcriptome sequencing. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-00100-4

Flora & Fauna Web. (2017). Boehmeria nivea (L.) Gaudich. https://www.nparks.gov.sg/florafaunaweb/flora/5/8/5847

Gan, S. T., Teo, C. J., Manirasa, S., Wong, W. C., & Wong, C. K. (2021). Assessment of genetic diversity and population structure of oil palm (Elaeis guineensis Jacq.) field genebank: A step towards molecular-assisted germplasm conservation. PLoS ONE, 16(7), e0255418. https://doi.org/10.1371/journal.pone.0255418

Greytak, E. M., Moore, C. C., & Armentrout, S. L. (2019). Genetic genealogy for cold case and active investigations. Forensic Science International, 299, 103–113. https://doi.org/10.1016/j.forsciint.2019.03.039

Gutiérrez, O. A., Stelly, D. M., Saha, S., Jenkins, J. N., McCarty, J. C., Raska, D. A., & Scheffler, B. E. (2009). Integrative placement and orientation of non-redundant SSR loci in cotton linkage groups by deficiency analysis. Molecular Breeding, 23(4), 693–707. https://doi.org/10.1007/s11032-009-9266-y

Habibie, S., Pengkajian, B., Teknologi, P., Anggaravidya, M., Suhendra, N., Setiawan, B. A., Hamzah, M., Aisah, N., Fitriani, D. A., & Tasomara, R. (2021). Prospect of Ramie Fiber Development in Indonesia and Manufacturing of Ramie Fiber Textile-based Composites for Industrial Needs, an Overview Inovation of Biomaterials Technology for Medical Devices View project Prospect of Ramie Fiber Development in Indonesia and Manufacturing of Ramie Fiber Textile-based Composites for Industrial Needs, an Overview. International Journal of Composite Materials, 2021(3), 43–53. https://doi.org/10.5923/j.cmaterials.20211103.01

Hartl, D. L. (2020). A Primer of Population Genetics and Genomics (4th ed.). Oxford University Press.

Hidayah, N., Wijayanti, K. S., Nurindah, & Yulianti, T. (2022). Possibility to develop biological control agents for plant diseases on ramie plantation. IOP Conference Series: Earth and Environmental Science, 974(1). https://doi.org/10.1088/1755-1315/974/1/012046

Kapoor, M., Mawal, P., Sharma, V., & Gupta, R. C. (2020). Analysis of genetic diversity and population structure in Asparagus species using SSR markers. Journal of Genetic Engineering and Biotechnology, 18(1). https://doi.org/10.1186/s43141-020-00065-3

Lemos, C. M. S., Silveira, L. R. R., Buuron, K. S., Santos, S. M. R., & Moro, C. S. (2019). Determining the Polymorphism Information Content of a molecular marker. In Gene (Vol. 726). Elsevier B.V. https://doi.org/10.1016/j.gene.2019.144175

Liao, L., Li, T., Zhang, J., Xu, L., Deng, H., & Han, X. (2014). The domestication and dispersal of the cultivated ramie (Boehmeria nivea (L.) Gaud. in Freyc.) determined by nuclear SSR marker analysis. Genetic Resources and Crop Evolution, 61(1), 55–67. https://doi.org/10.1007/s10722-013-0014-0

Liu, C., Ma, N., Wang, P. Y., Fu, N., & Shen, H. L. (2013). Transcriptome Sequencing and De Novo Analysis of a Cytoplasmic Male Sterile Line and Its Near-Isogenic Restorer Line in Chili Pepper (Capsicum annuum L.). PLoS ONE, 8(6). https://doi.org/10.1371/journal.pone.0065209

Liu, J., Li, M., Zhang, Q., Wei, X., & Huang, X. (2020). Exploring the molecular basis of heterosis for plant breeding. Journal of Integrative Plant Biology, 62(3), 287–298. https://doi.org/10.1111/jipb.12804

Liu, T., Tang, S., Zhu, S., & Tang, Q. (2014). QTL mapping for fiber yield-related traits by constructing the first genetic linkage map in ramie (Boehmeria nivea L. Gaud). Molecular Breeding, 34(3), 883–892. https://doi.org/10.1007/s11032-014-0082-7

Luan, M. B., Liu, C. C., Wang, X. F., Xu, Y., Sun, Z. M., & Chen, J. H. (2017). SSR markers associated with fiber yield traits in ramie (Boehmeria nivea L. Gaudich). Industrial Crops and Products, 107, 439–445. https://doi.org/10.1016/j.indcrop.2017.05.065

Mishra, M. K., Tornincasa, P., De Nardi, B., Asquini, E., Dreos, R., Del Terra, L., Rathinavelu, R., Rovelli, P., Pallavicini, A., & Graziosi, G. (2011). Genome organization in coffee as revealed by EST PCRRFLP, SNPs and SSR analysis. Journal of Crop Science and Biotechnology, 14(1), 25–37. https://doi.org/10.1007/s12892-010-0035-6

Mokrousov, I., Chernyaeva, E., Vyazovaya, A., Skiba, Y., Solovieva, N., Valcheva, V., Levina, K., Malakhova, N., Jiao, W. W., Gomes, L. L., Suffys, P. N., Kütt, M., Aitkhozhina, N., Shen, A. D., Narvskaya, O., & Zhuravlev, V. (2018). Rapid assay for detection of the epidemiologically important central asian/russian strain of the mycobacterium tuberculosis beijing genotype. Journal of Clinical Microbiology, 55(12). https://doi.org/10.1128/JCM.01551-17

Murianingrum, M., Budi, U. S., Marjani, & Nurindah. (2019). Mala murianingrum : Study on Cellulose Sponges Reinforced by Viscose Rayon Fibers. Proceeding Indonesian Textile Conference, 1, 139–149. https://doi.org/10.5281/zenodo.3471015

Ni, J. le, Zhu, A. G., Wang, X. F., Xu, Y., Sun, Z. M., Chen, J. H., & Luan, M. B. (2018). Genetic diversity and population structure of ramie (Boehmeria nivea L.). Industrial Crops and Products, 115, 340–347. https://doi.org/10.1016/j.indcrop.2018.01.038

Sharma, R., Kumar, B., Arora, R., Ahlawat, S., Mishra, A. K., & Tantia, M. S. (2016). Genetic diversity estimates point to immediate efforts for conserving the endangered Tibetan sheep of India. Meta Gene, 8, 14–20. https://doi.org/10.1016/j.mgene.2016.01.002

Sheriff, O., & Alemayehu, K. (2018). Genetic diversity studies using microsatellite markers and their contribution in supporting sustainable sheep breeding programs: A review. Cogent Food and Agriculture, 4(1), 1-9. https://doi.org/10.1080/23311932.2018.1459062

Shi, Y., Huang, K., Niu, J., Zhong, Y., Sun, Z., Luan, M., & Chen, J. (2022). Association Analysis and Validation of Simple Sequence Repeat Markers for Fiber Fineness in Ramie (Boehmeria Nivea L. Gaudich). Journal of Natural Fibers, 19(10), 3615–3623. https://doi.org/10.1080/15440478.2020.1848714

Smith, J. S. C., Chin, E. C. L., Shu, H., Smith, O. S., Wall, S. J., Senior, M. L., Mitchell, S. E., Kresovich, S., & Ziegle, J. (1997). An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPS and pedigree. Theoretical and Applied Genetics, 95, 163-173. https://doi.org/10.1007/s001220050544

Sochor, M., Jemelková, M., & Doležalová, I. (2019). Phenotyping and SSR markers as a tool for identification of duplicates in lettuce germplasm. Czech Journal of Genetics and Plant Breeding, 55(3), 110–119. https://doi.org/10.17221/68/2018-CJGPB

Suherman, C., Nuraini, A., & Wulandari, V. S. R. (2017). Respons tiga klon tanaman rami (Boehmeria nivea (L.) Gaud) terhadap konsentrasi asam giberelat yang berbeda. Jurnal Kultivasi 16(3), 494–502.

Treuren, R. V. (2021). Characteristics of genetic markers: Codominance of alleles. Wageningen University & Research. https://wur.nl/

Wang, Y., Zeng, Z., Li, F., Yang, X., Gao, X., Ma, Y., Rao, J., Wang, H., & Liu, T. (2019). A genomic resource derived from the integration of genome sequences, expressed transcripts and genetic markers in ramie. BMC Genomics, 20(1). https://doi.org/10.1186/s12864-019-5878-8

Wu, X., Wang, L., Zhang, D., & Wen, Y. (2019). Microsatellite null alleles affected population genetic analyses: a case study of Maire yew (Taxus chinensis var. mairei). Journal of Forest Research, 24(4), 230–234. https://doi.org/10.1080/13416979.2019.1634230

Yadav, A., Simha, P., Sathe, P., Gantayet, L. M., & Pandit, A. (2022). Coupling chemical degumming with enzymatic degumming of ultrasound pre-treated ramie fiber using Bacillus subtilis ABDR01. Environmental Technology and Innovation, 28. https://doi.org/10.1016/j.eti.2022.102666

Zach. (2020). A Simple Explanation of the Jaccard Similarity Index. https://www.statology.org/jaccard-similarity/

Zhou, J., Li, Z., & Yu, C. (2017). Property of ramie fiber degummed with Fenton reagent. Fibers and Polymers, 18(10), 1891–1897. https://doi.org/10.1007/s12221-017-6489-0




DOI: https://doi.org/10.18196/pt.v12i1.16049

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Annisa Annisa, Widya Nur Pangestu, Joko Kusmoro, Budi Irawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





 

Editorial Office
Planta Tropika
Department of Agrotechnology, Faculty of Agriculture, Universitas Muhammadiyah Yogyakarta
Jl. Brawijaya, Tamantirto, Kasihan, Bantul, D.I. Yogyakarta, Indonesia
Phone: +62 274 387656, Ext.: 224 / +62 81329320575
Email: plantatropika@umy.ac.id
E-ISSN: 2528-7079
p-ISSN: 0216-499X

 

Creative Commons License
Planta Tropika is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.