Inoculation Methods to Determine Resistance of Phalaenopsis amabilis (L.) Regeneratded from Irradiated Protocorms to Dickeya dadantii

Halida Adistya Putri, Dewi Sukma, Sudarsono Sudarsono, Agus Purwito

Abstract


Soft-rot disease (SRD) in Phalaenopsis, caused Dickeya dadantii, has resulted in significant losses in the orchid sector in Indonesia. This study aimed to evaluate the inoculation method of Dickeya dadantii and identify the resistance response of individual regenerated plantlets of Phal. amabilis from irradiated protocorm. A detached leaf assay was used to evaluate the inoculation method and resistance response of SRD. Based on the results of this study, Dickeya dadantii bacteria could only infect the leaves through wounding tissue. The density of bacteria that could infect leaf tissue was OD600 = 0.2. All dilution factors tested caused soft rot symptoms in P. amabilis. On the other hand, Vanilla planifolia only showed symptoms at a dilution factor of 10-0. Four accessions of regenerated plantlets from irradiated protocorms were resistant to SRD. They were from irradiation 5 Gy (IP 05 Gy-23, IP 05 Gy-31, and IP 05 Gy-33) and one accession from the control treatment or without irradiation (IP 0 Gy -1). These results showed that 5 Gy irradiation increased plant resistance to SRD in Phalaenopsis. A dose of 5 Gy can potentially produce mutant lines resistant to SRD in Phalaenopsis or other plants, too.


Keywords


Detached leaf assay; Soft-rot disease; Mutant

Full Text:

PDF

References


Alic, S., Naglic, T., Tsuek-Znidaric, M., Peterka, M., & Dreo, T. (2017). Putative new species of the genus Dickeya as major soft rot pathogens in Phalaenopsis orchid production. Plant Pathology, 66, 1357-1368. https://doi.org/10.1111/ppa.12677

Azis, S, A., Sukma, D., Syukur, M., & Azmi, K, K. (2021). Development of new Phalaenopsis cultivars using colchicine. Acta Hortic, 1340, 223-230. https://doi.org/10.17660/ActaHortic.2022.1340.35

Balamurugan, A., Kumar, A., Sakthivel, K., Ashajyothi, M., Sahu K, P., & Karthikeyan, M. (2020). Characterization of Dickeya fangzhongdai causing bacterial soft rot disease on Dendrobium nobile in India. Eur J Plant Pathol, 158, 773-780. https://doi.org/10.1007/s10658-020-02094-7

Charkowski, A, O. (2018). The changing face of bacterial soft-rot diseases. Annual Review of Phytopathology, 56(1),1-20. https://doi.org/10.1146/annurev-phyto-080417-045906

Chen, T, Y., Pai, H., Lee, S, C., Lin, T, T., Chang, C, H., Hsu, C, F., & Lin, N, S. (2019). Dual resistance of transgenic plants against Cymbidium mosaic virus and Odontoglossum ringspot virus. Scientific Reports, 9(1), 1-12. https://doi.org/10.1038/s41598-019-46695-7

Chuang, H. W., Tseng, T, S., Hsieh, H, Y., Kao, T, C., & Chen, G, H. (2020). Common cellular events implicated in the regulation of cold stress tolerance and soft rot resistance induced by metabolites of Pseudomonas aeruginosa in Phalaenopsis orchids. Advanced Chemicobiology Research, 1(1), 5-21. https://doi.org/10.37256/acbr.11202272

Elina, J. (2016). Respon ketahanan anggrek Phalaenopsis terhadap penyakit busuk lunak akibat infeksi Dickeya dadantii [Graduate School Thesis IPB University].

Ferreira, M, S., Moura, E, R., Lino, L, S, M., Amorim, E., Santoso-Serejo, J, A., & Haddad, F. (2020). Selection of somaclonal variants of the cultivar ‘Prata-Anã’ for resistance to Fusarium oxysporumf. sp.cubense race 1. Rev. Bras. Frutic, 42(6), 1-10. http://dx.doi.org/10.1590/0100-29452020620

Flagnan, N, S., Ospina-Calderon, N, H., Agapito, L, T., Mendoza, M., & Mateus, H, A. (2018). A new species of Vanilla (Orchidaceae) from the North West Amazon in Colombia. Phytotaxa, 364(3), 250-258. https://doi.org/10.11646/phytotaxa.364.3.4

Fu, S. & Huang, H, J. (2011). Orchid Biotechnology II: Molecular Characterization of The Early Response of Orchid Phalaenopsis amabilis to Erwinia chrysantemi Infection (Chen WH & Chen HH ed. World Sci. https://doi.org/10.1142/9789814327930_0015

Griesbach, R, J. (2002). Trend in New Crops and New Uses: Development of Phalaenopsis Orchids for The Mass-market (Janick J & Whipkey A Ed.). ASHS Press.

Jeong, R, D., Jeong, M, A., & Park, M, R. (2017). Gamma irradiation- -induced disease resistance of pear (Pyrus pyrifolia “Niitaka”) against Penicillium expansum. Journal of Phytopathology, 165(9), 626-633. https://doi.org/10.1111/jph.12601

Joko, T., Subandi., Kusumandari., Wibowo, A., Priyatmojo, A. (2014). Activities of plant cell wall-degrading enzymes by bacterial soft rot of orchid. Archives of Phytopathology and Plant Protection, 47(10), 1239-1250. http://dx.doi.org/10.1080/03235408.2013

Kraepiel, Y., Pedron, J., Patrit, O., Simond-Cote, E., Herman, V., & Gjsegem, F, V. (2011). Analysis of the plant bos1 mutant highlights necrosis as an efficient defense mechanism during D. dadantii/Arabidospis thaliana interaction. PLoS ONE, 6(4), e18991. https://doi.org/10.1371/journal.pone.0018991

Lubis, U, N, Q., Sudarsono, S., & Sukma, D. (2021). The response of Phalaenopsis amabilis seedling (in vitro and greenhouse) after salicylic acid treatment to Dickeya dadantii infection. IOP Conf. Series: Earth and Environmental Science, 694(012041). https://doi.org/10.1088/1755-1315/694/1/012041

Mahfut, Anngreiny, A., Wahyuningsih, S., Handayani, T, T., & Sukimin. (2020). Identification of disease and efforts to protect native orchid plants against bacteria infection in Liwa Botanical Garden. Journal of Physics: Conference Series, 1641, 1-8. https://doi.org/10.1088/1742-6596/1641/1/012098

Mohammadi, M., Kaviani, B., & Sedaghathoor, S. (2020). In vivo polyploidy induction of Phalaenopsis amabilis in a bubble bioreactor system using colchicine. Ornamental Horticulture, 27(2), 204-212. https://doi.org/10.1590/2447-536X.v27i2.2275

Mukherjee, S & Bassler, B, L. (2019). Bacterial quorum sensing in complex and dynamically changing environments. Nature Review Microbiology, 17(6), 371-382. https://doi.org/10.1038/s41579-019-0186-5

Nisaq, G, J., Sudarsono, S., & Sukma, D. (2021). Nano silica spray increases Phalaenopsis pulcherrima growth and resistance against Dickeya dadantii infection. OP Conf. Series: Earth and Environmental Science, 694(012040), 788-797. https://doi.org/10.1088/1755-1315/694/1/012040

Nurcahyani, E., Sumardi., Qudus, H, I., Palupi, A., & Sholekhah. (2019). Analysis of chlorophyll Phalaenopsis amabilis (L.) results of the resistance to Fusarium oxysporum and drought stress. IOSR Journal of Agriculture and Veterinary Science, 12(11), 41-46. https://doi.org/10.9790/2380-1211014146

Putri, H, A., Purwito, A., Sudarsono, S., & Sukma, D. (2021). Morphological, molecular, and resistance responses to soft-rot disease variability among plantlets of Phalaenopsis amabilis regenerated from irradiated protocorms. Biodiversitas, 22(3), 1077-1090. https://doi.org/10.13057/biodiv/d220301

Raihanun, S. (2017). Morphological diversity and the resistance to Dickeya dadantii Infection of Phalaenopsis amabilis (L.) Blume irradiated with gamma ray[Graduate School Thesis IPB University].

Raynalta, E. (2017). Molecular characterization of Phalaenopsis orchid clones, species, and hybrid, using Pto gene-based SNAP marker[Graduate School Thesis IPB University]

Rigault, M., Citerne, S., Masclaux-Daubresse, C., & Dellagi, A. (2021). Salicylic acid is a key player of Arabidopsis autophagy mutant susceptibility to the necrotrophic bacterium Dickeya dadantii. Scientific Reports, 11(3624), 1-10. https://doi.org/10.1038/s41598-021-83067-6.

Sanjaya, I, P, W., Sudarsono, S., Chan, M-T., & Sukma, D. (2022). Molecular characterization of soft-rot disease pathogen from Phalaenopsus and differences in genotype response to its infection. ISHS Acta Horticulturae 1334: II International Symposium on Tropical and Subtropical Ornamentals. https://doi.org/10.17660/ActaHortic.2022.1334.14

Sanjaya, IPW, Sukma D, Sudarsono S, & Chan, M-T. (2021). Relationship of resistance-related enzyme activity and salicylic acid content in Phalaenopsis species with different levels of resistance to Dickeya Dadantii. Journal of Horticultural Research, 29(2), 31–44. https://doi.org/10.2478/johr-2021-0018

Singh, S., Singh, Y., & Singh, V. (2019). Divulging the comparing inoculation methods for assessing pathogenicity of Dickeya dadantii inciting stalk rot disease of sorghum. Journal of Pharmacognosy and Phytochemistry, 8(1), 1409-1413.

Sudarsono, S., Elina, J., Giyanto, & Sukma, D. (2018). Pathogen causing Phalaenopsis soft rot disease – 16S rDNA and virulence characterization. Plant Protect Sci, 54(1), 1-8. https://doi.org/10.17221/18/2017-PPS

Sukma, D., Elina, J., Giyanto, & Sudarsono. (2017). Disease resistance breeding of Phalaenopsis spp. for tropical environment and molecular marker development for plant selection. Acta Horticulture, 1167, 237-243. https://doi.org/10.17660/ActaHortic.2017.1167.36

Suputra I, P, W., Wirya G, N, S, S., Sari N, B, K., Temaja I, G, R, M., Innosensia., N, L, P, C. 2022. Identification and Characterization of Soft Rot Bacterial Pathogens on Phalaenopsis

Tang, C, Y., & Chen, W, H. (2007). Orchid Biotechnology: Breeding and Development of New Varieties in Phalaenopsis (Chen WH & Chen HH, ed.). World Science.

Zahara, M & Win, C, C. (2019). Morphological and Stomatal Characteristics of Two Indonesian Local Orchids. Journal of Tropical Horticulture, 2(2),165-69. https://doi.org/10.33089/jthort.v2i2.26




DOI: https://doi.org/10.18196/pt.v12i1.16731

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Halida Adistya Putri

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





 

Editorial Office
Planta Tropika
Department of Agrotechnology, Faculty of Agriculture, Universitas Muhammadiyah Yogyakarta
Jl. Brawijaya, Tamantirto, Kasihan, Bantul, D.I. Yogyakarta, Indonesia
Phone: +62 274 387656, Ext.: 224 / +62 81329320575
Email: plantatropika@umy.ac.id
E-ISSN: 2528-7079
p-ISSN: 0216-499X

 

Creative Commons License
Planta Tropika is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.