Quality Coefficient on Gene Differentiation and Phenotype: Clone Assessment of Saccharum officinarum Linn
Abstract
The production of superior sugarcane varieties can be achieved through crossbreeding between superior parent plants based on the desired advantages. Research examined the diversity of superior clones of SB04, SB11, SB19, and SB20 and identified the clones with the highest productivity potential. The first ratoon research was carried out from August 2020 to July 2021. Data analysis used descriptive-analytic methods, regression tests, and genetic diversity assessment. The observation was made on agronomic variables and potential productivity. Based on the result, the genetic diversity of the superior clone SB04 showed close similarity to the heterozygous combination PS862. The superior clone SB11 showed a tendency to inherit traits similar to Cenning. The superior clones SB19 and SB20 lean towards the VMC71-238 variety and the combination of PSBM01 and VMC71-238. The superior clones SB04, SB11, SB19, and SB20 produced higher weight, yield, and sugarcane crystal content compared to the characteristics of their two parents. Clones SB04, SB11, SB19, and SB20 produced high crystal content, ranging from 8.47 to 15.26 tons/ha, higher than their parent plants. SB19 had the highest yield, namely 15.26 tons/ha. Although some clones dominate crystal production, other clones inherit traits from both parents but are less dominant in overall productivity.
Keywords
Full Text:
PDFReferences
Ahmed, K. I., Patil, S. B., Ng, H., & Nadgouda, B. T. (2019). Genetic variability studies for yield and its component traits in selected clones of sugarcane. Journal of Pharmacognosy and Phytochemistry, 8(2), 894–898.
Alarmelu, S., Durai, A. A., Swamy, H. M., Hemaprabha, G., & Pazhany, A. S. (2021). Genetic diversity of parental clones used in breeding programs of sugarcane. Electronic Journal of Plant Breeding, 12(2), 529-539.
Ali, A., Pan, Y. B., Wang, Q. N., Wang, J. Da, Chen, J. L., & Gao, S. J. (2019). Genetic diversity and population structure analysis of Saccharum and Erianthus genera using microsatellite (SSR) markers. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-018-36630-7
Amna, Xia, Y., Farooq, M. A., Javed, M. T., Kamran, M. A., Mukhtar, T., Ali, J., Tabassum, T., Rehman, S. ur, Hussain Munis, M. F., Sultan, T., & Chaudhary, H. J. (2020). Multi-stress tolerant PGPR Bacillus xiamenensis PM14 activating sugarcane (Saccharum officinarum L.) red rot disease resistance. Plant Physiology and Biochemistry, 151(April), 640–649. https://doi.org/10.1016/j.plaphy.2020.04.016
Anwar, K., Redjeki, E. S., & Budi, S. (2021). Perbedaan Pertumbuhan Dan Hasil Tiga Klon Tanaman Tebu (Saccharum officinarum L.) Pada Tanah Aluvial Di Desa Sambiroto Kecamatan Sooko – Mojokerto. TROPICROPS (Indonesian Journal of Tropical Crops), 4(1), 1–10.
Barreto, F. Z., Balsalobre, T. W. A., Chapola, R. G., Garcia, A. A. F., Souza, A. P., Hoffmann, H. P., Gazaffi, R., & Carneiro, M. S. (2021). Genetic variability, correlation among agronomic traits, and genetic progress in a sugarcane diversity panel. Agriculture, 11(6), 1–15. https://doi.org/10.3390/agriculture11060533
Barreto, F. Z., Rosa, J. R. B. F., Balsalobre, T. W. A., Pastina, M. M., Silva, R. R., Hoffmann, H. P., de Souza, A. P., Garcia, A. A. F. & Carneiro, M. S. (2019). A genome-wide association study identified loci for yield component traits in sugarcane (Saccharum spp.). PLoS One, 14(7), e0219843. https://doi.org/10.1371/journal.pone.0219843
Begna, T. (2020). Major challenging constraints to crop production farming system and possible breeding to overcome the constraints. International Journal of Research Studies in Agricultural Sciences (IJRSAS), 6(7), 27-46. http://dx.doi.org/10.20431/2454-6224.0607005
Bhatt, R. (2020). Resources use efficiency in agriculture: Resources management for sustainable sugarcane production (Eds. Kumar, S., Meena, R.S., Jhariya, M.K.). Springer. https://doi.org/10.1007/978-981-15-6953-1_18.
Budeguer, F., Enrique, R., Perera, M. F., Racedo, J., Castagnaro, A. P., Noguera, A. S., & Welin, B. (2021). Genetic transformation of sugarcane, current status and future prospects. Frontiers in Plant Science, 12, 768609. https://doi.org/10.3389/fpls.2021.768609
Calderan-Rodrigues, M. J., de Barros Dantas, L. L., Cheavegatti Gianotto, A., & Caldana, C. (2021). Applying molecular phenotyping tools to explore sugarcane carbon potential. Frontiers in Plant Science, 12, 637166. https://doi.org/10.3389/fpls.2021.637166
Campuzano, O., Sarquella-Brugada, G., Cesar, S., Arbelo, E., Brugada, J., & Brugada, R. (2020). Update on genetic basis of Brugada syndrome: monogenic, polygenic or oligogenic?. International Journal of Molecular Sciences, 21(19), 7155. https://doi.org/10.3390/ijms21197155
Cursi, D. E., Hoffmann, H. P., Barbosa, G. V. S., Bressiani, J. A., Gazaffi, R., Chapola, R. G., Junior, A. R. F., Balsalobre, T. W. A., Diniz, C. A., Santos, J. M. & Carneiro, M. S. (2022). History and current status of sugarcane breeding, germplasm development and molecular genetics in Brazil. Sugar Tech, 24(1), 112-133.
Das, S., & Bansal, M. (2019). Variation of gene expression in plants is influenced by gene architecture and structural properties of promoters. PLoS One, 14(3), e0212678. https://doi.org/10.1371/journal.pone.0212678
Filho, J. D. A. D., Calsa Júnior, T., Simões Neto, D. E., Souto, L. S., Souza, A. D. S., de Luna, R. G., Gomes-Silva, F., Moreira, G. R., Cunha-Filho, M., André Luiz Pinto dos Santos,Cícero Carlos Ramos de Brito,Fabiana Aparecida Cavalcante Silva, Porto, A. C. F. & da Costa, M. L. L. (2021). Genetic divergence for adaptability and stability in sugarcane: Proposal for a more accurate evaluation. Plos one, 16(7), e0254413. https://doi.org/10.1371/journal.pone.0254413
Hamida, R., & Parnidi, P. (2019). Kekerabatan Plasma Nutfah Tebu Berdasarkan Karakter Morfologi. Buletin Tanaman Tembakau, Serat & Minyak Industri, 11(1), 24. https://doi.org/10.21082/btsm.v11n1.2019.24-32
Heliyanto, B., & Abdurrakhman. (2022). Yield test of newly collected genotypes of sugarcane under the dry agro-ecological condition. IOP Conference Series: Earth and Environmental Science, 974(1). https://doi.org/10.1088/1755-1315/974/1/012018
Hoarau, J. Y., Dumont, T., Wei, X., Jackson, P., & D’hont, A. (2022). Applications of quantitative genetics and statistical analyses in sugarcane breeding. Sugar Tech, 24(1), 320-340.
Khan, Q., Chen, J. Y., Zeng, X. P., Qin, Y., Guo, D. J., Mahmood, A., Yang, L. T., Liang, Q., Song, X. P., Xing, Y. X., & Li, Y. R. (2021). Transcriptomic exploration of a high sucrose mutant in comparison with the low sucrose mother genotype in sugarcane during sugar accumulating stage. GCB Bioenergy, 13(9), 1448–1465. https://doi.org/10.1111/gcbb.12868
Khan, Q., Qin, Y., Guo, D. J., Zeng, X. P., Chen, J. Y., Huang, Y. Y., Ta, Q. T., Yang, L. T., Liang, Q., Song, X. P., Xing, Y. X. & Li, Y. R. (2022). Morphological, agronomical, physiological and molecular characterization of a high sugar mutant of sugarcane in comparison to mother variety. Plos one, 17(3), e0264990. https://doi.org/10.1371/journal.pone.0264990
Komape, D. M. (2019). Spatial assessment of Saccharum species hybrids and wild relatives in eastern South Africa [Master Dissertation, North-West University (South Africa)]. Boloca Institutional Repository. https://dspace.nwu.ac.za/handle/10394/33870
Kristini, A., Adi, H. C., Kardianasari, A., Rifai, F. D., & Jati, W. W. (2022). Pengendalian Penyakit Luka Api pada Tanaman Tebu dengan Fungisida Flutriafol. Indonesian Sugar Research Journal, 2(2), 86–94. https://doi.org/10.54256/isrj.v2i2.86
Kumari, P., Kumar, B., Bihar, P., & Singh, D. (2020). To study genetic variability , heritability and genetic advance for cane and sugar yield attributing traits in mid-late maturing sugarcane clones. Journal of Pharmacognosy and Phytochemistry, 9(1), 1890–1894.
Luo, T., Zhou, Z., Deng, Y., Fan, Y., Qiu, L., Chen, R., Yan, H., Zhou, H., Lakshmanan, P., Wu, J., & Chen, Q. (2022). Transcriptome and metabolome analyses reveal new insights into chlorophyll, photosynthesis, metal ion and phenylpropanoids related pathways during sugarcane ratoon chlorosis. BMC Plant Biology, 22(1), 1–15. https://doi.org/10.1186/s12870-022-03588-8
Mehdi, F., Cao, Z., Zhang, S., Gan, Y., Cai, W., Peng, L., Wu, Y., Wang, W. & Yang, B. (2024). Factors affecting the production of sugarcane yield and sucrose accumulation: suggested potential biological solutions. Frontiers in Plant Science, 15, 1374228. https://doi.org/10.3389/fpls.2024.1374228
Meena, M. R., Appunu, C., Arun Kumar, R., Manimekalai, R., Vasantha, S., Krishnappa, G., Kumar, R., Pandey S.K., & Hemaprabha, G. (2022). Recent advances in sugarcane genomics, physiology, and phenomics for superior agronomic traits. Frontiers in Genetics, 13, 854936. https://doi.org/10.3389/fgene.2022.854936
Mertler, C. A., Vannatta, R. A., & LaVenia, K. N. (2021). Advanced and multivariate statistical methods: Practical application and interpretation (Ed. 7th). Routledge. https://doi.org/10.4324/9781003047223
Montaldo, Y., Santos, T. M. C. dos, Silva, J. M. da, Cristo, C. C. N. de, & Ramalho Neto, C. E. (2021). Bacterial biofilm production and water stress resistance by rhizobacteria associated to sugarcane (Saccharum officinarum) Linnaeus (POACEAE). Diversitas Journal, 6(2), 1899–1909. https://doi.org/10.17648/diversitas-journal-v6i2-1179
Napier, J. D., Heckman, R. W., & Juenger, T. E. (2023). Gene-by-environment interactions in plants: Molecular mechanisms, environmental drivers, and adaptive plasticity. The Plant Cell, 35(1), 109-124. https://doi.org/10.1093/plcell/koac322
Neto, H. Z., Borsuk, L. G. da M., Dos Santos, L. R. F., Angeli, H. S., Berton, G. S., & Sousa, L. L. de. (2020). Genetic diversity and population structure of sugarcane (Saccharum spp.) accessions by means of microsatellites markers. Acta Scientiarum - Agronomy, 42, 1–10. https://doi.org/10.4025/actasciagron.v42i1.45088
Pathirana, R., & Carimi, F. (2022). Management and utilization of plant genetic resources for a sustainable agriculture. Plants, 11(15), 2038. https://doi.org/10.3390/plants11152038
Patra, D. (2022). Genetic characterization of advanced breeding lines for high sugar and yield stability in sugarcane [Doctoral Thesis Odisha University of Agriculture and Technology]. KriKosh an Institutional Repository of Indian National Agriculture Research System. https://krishikosh.egranth.ac.in/handle/1/5810208755
Pocovi, M. I., Collavino, N. G., Gutiérrez, Á., Taboada, G., Castillo, V., Delgado, R., & Mariotti, J. A. (2020). Molecular versus morphological markers to describe variability in sugar cane (Saccharum officinarum) for germplasm management and conservation. Revista de La Facultad de Ciencias Agrarias, 52(1), 40–60.
Prabowo, H., Rahardjo, B. T., Mudjiono, G., & Rizali, A. (2021). Impact of habitat manipulation on the diversity and abundance of beneficial and pest arthropods in sugarcane ratoon. Biodiversitas, 22(9), 4002–4010. https://doi.org/10.13057/biodiv/d220948
Reckling, M., Ahrends, H., Chen, T. W., Eugster, W., Hadasch, S., Knapp, S., Laidig, F., Linstädter, A., Macholdt, J., Piepho, H. P., Schiffers, K. & Döring, T. F. (2021). Agronomy for Sustainable Development: Methods of yield stability analysis in long-term field experiments. Springer. https://doi.org/10.1007/s13593-021-00681-4
Restu, A., Raharjeng, P., Kusumaningtyas, A. A., Widatama, D. A., Zarah, S., Pratama, F., & Dani, H. B. (2021). Tropical genetics, 1(1), 6–11.
Rosales, R. (2021). Hypocholesterolemic Effect of Mature Leaf Extract of Sugarcane, Saccharum officinarum (Linnaeus, 1753), in Induced Rats. ASEAN Journal of Science and Engineering, 1(3), 199–206. https://doi.org/10.17509/ajse.v1i3.38784
Saini, P., Saini, P., Kaur, J. J., Francies, R. M., Gani, M., Rajendra, A. A., Negi, N., Jagtap, A., Kadam, A., Singh, C. & Chauhan, S. S. (2020). Rediscovery of Genetic and Genomic Resources for Future Food Security: Molecular Approaches for Harvesting Natural Diversity for Crop Improvement (Eds. Salgotra, R., Zargar, S.). Springer. https://doi.org/10.1007/978-981-15-0156-2_3
Sulaiman, A. A., Sulaeman, Y., Mustikasari, N., Nursyamsi, D., & Syakir, A. M. (2019). Increasing sugar production in Indonesia through land suitability analysis and sugar mill restructuring. Land, 8(4), 61. https://doi.org/10.3390/land8040061
Snowdon, R. J., Wittkop, B., Chen, T. W., & Stahl, A. (2021). Crop adaptation to climate change as a consequence of long-term breeding. Theoretical and Applied Genetics, 134(6), 1613-1623.
Tena, E., Tadesse, F., Million, F., & Tesfaye, D. (2023). Phenotypic diversity, heritability, and association of characters in sugarcane genotypes at Metehara Sugar Estate, Ethiopia. Journal of Crop Improvement, 37(6), 874-897.
Tesfa, M., Tena, E., & Kebede, M. (2024). Characterization and morphological diversity of sugarcane (Saccharum officinarum) genotypes based on descriptor traits. Journal of Crop Improvement, 38(1), 40-71. https://doi.org/10.1080/15427528.2023.2277473
Tolera, B., Gedebo, A., & Tena, E. (2023). Variability, heritability and genetic advance in sugarcane (Saccharum spp. hybrid) genotypes. Cogent Food & Agriculture, 9(1), 2194482. https://doi.org/10.1080/23311932.2023.2194482
Uchtiawati, S., Budi, S., Arifani, Y., & Prihatiningrum, A. E. (2020). Response of the growth superior sugarcane clones on soil acidity levels sourced from budchip seeds. Journal of Physics: Conference Series, 1469(1). https://doi.org/10.1088/1742-6596/1469/1/012007
Xu, F., Wang, Z., Lu, G., Zeng, R., & Que, Y. (2021). Sugarcane ratooning ability: Research status, shortcomings, and prospects. Biology, 10(10), 1–13. https://doi.org/10.3390/biology10101052
Yadav, S., Ross, E. M., Wei, X., Powell, O., Hivert, V., Hickey, L. T., Felicity Atkin, F., Deomano, E., Aitken, K. S.,Voss-Fels , K. P. & Hayes, B. J. (2023). Optimising clonal performance in sugarcane: leveraging non-additive effects via mate-allocation strategies. Frontiers in Plant Science, 14, 1260517. https://doi.org/10.3389/fpls.2023.1260517
Zan, F., Zhang, Y., Wu, Z., Zhao, J., Wu, C., Zhao, Y., Chen, X., Zhao, L., Qin, W., Yao, L., Xia, H., Zhao, P., Yang, K., Liu, J. & Yang, X. (2020). Genetic analysis of agronomic traits in elite sugarcane (Saccharum spp.) germplasm. Plos one, 15(6), e0233752. https://doi.org/10.1371/journal.pone.0233752
Zhang, D., Zhang, Z., Unver, T., & Zhang, B. (2021). CRISPR/Cas: A powerful tool for gene function study and crop improvement. Journal of Advanced Research, 29, 207-221. https://doi.org/10.1016/j.jare.2020.10.003
DOI: https://doi.org/10.18196/pt.v12i2.22232
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Prof Setyo Budi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Editorial Office
Planta Tropika
Department of Agrotechnology, Faculty of Agriculture, Universitas Muhammadiyah Yogyakarta
Jl. Brawijaya, Tamantirto, Kasihan, Bantul, D.I. Yogyakarta, Indonesia
Phone: +62 274 387656, Ext.: 224 / +62 81329320575
Email: plantatropika@umy.ac.id
E-ISSN: 2528-7079
p-ISSN: 0216-499X
Planta Tropika is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.