Genetic Diversity, Heritability and Agronomic Traits of Upland Rice Cultivars

Authors

  • Mustakim Mustakim Study Program of Agrotechnology, Faculty of Agriculture and Animal Husbandry, Abdul Azis Lamadjido University, Jl. DR. Suharso, Besusu, East Palu, Palu City, Central Sulawesi, 94118, Indonesia https://orcid.org/0009-0002-9076-3177
  • Sakka Samudin Study Program of Agrotechnology, Faculty of Agriculture, Tadulako University, Jl. Soekarno Hatta No. Km. 9, Tondo, Mantikulore, Palu City, Central Sulawesi 94148, Indonesia
  • Mustamin Mustamin Study Program of Agrotechnology, Faculty of Agriculture and Animal Husbandry, Abdul Azis Lamadjido University, Jl. DR. Suharso, Besusu, East Palu, Palu City, Central Sulawesi, 94118, Indonesia
  • Maemunah Maemunah Study Program of Agrotechnology, Faculty of Agriculture, Tadulako University, Jl. Soekarno Hatta No. Km. 9, Tondo, Mantikulore, Palu City, Central Sulawesi 94148, Indonesia

DOI:

https://doi.org/10.18196/pt.v13i2.24165

Keywords:

Agronomic, Character, Genetic diversity, Heritability

Abstract

The Indonesian archipelago boasts a rich biodiversity, particularly a vast collection of local upland rice germplasm, many of which remain unidentified. The study aimed to expand the collection of local rice germplasm by considering the genetic variability coefficient and heritability values and identifying cultivars with the potential to become superior local varieties. The research was conducted in Tamarenja Village from April to October 2024. The study used a single-factor randomized block design with eight cultivars as treatments, including Pae Bohe, Kalendeng, Delima, Pulu Tau Leru, Dongan, Wangga, Logi, Tako, Buncaili, Uva, Uva Buya, and Jahara. The collected data were analyzed using variance analysis, genetic variability coefficient analysis, heritability, and agronomic trait analysis using the LSD test at a 1% significance level. The results showed high genetic diversity, with genetic coefficient of variation (GCV) values between 24.56% and 53.49%. Estimates of heritability were also high, with most characteristics having more than 80% heritability. Grain yield (97.93%), number of grains per panicle (95.87%), and 1000-grain weight (97.49%) were all strongly controlled by genetics. Delima exhibited the longest panicle at 38.55 cm, containing 260 grains per panicle. The results identify Jahara, Kalendeng, Dongan, Logi, and Uva Buya as exceptional cultivars with considerable potential for upland rice breeding.

References

Al-Imran, D., Musila, R. N., & Kamau, W. J. (2022). Agronomic performance, genetic variation and heritability of yield and related traits in rice genotypes under upland conditions. African Journal of Pure and Applied Sciences, 3(1), 169–176. https://doi.org/10.33886/ajpas.v3i1.256

Ariyani, N. I., Adriani, D. E., Program, G. R., Magister, S., Fakultas, A., Universitas, P., & Mangkurat Banjarbaru, L. (2020). Agronomic Characters of Superior Variety at Various Nitrogen Dossage at Tidal Swamp. 16(1), 95–108.

Bhor, T., Kashid, N., & Kadam, S. (2020). Genetic variability, character association and path analysis studies for yield components traits in promising rice (Oryza sativa L.) genotypes. Journal of Pharmacognosy and Phytochemistry, 9(4), 1953–1956. www.phytojournal.com

Calayugan, M. I. C., Hore, T. K., Palanog, A. D., Amparado, A., Inabangan-Asilo, M. A., Joshi, G., Chintavaram, B., & Swamy, B. P. M. (2024). Deciphering the genetic basis of agronomic, yield, and nutritional traits in rice (Oryza sativa L.) using a saturated GBS-based SNP linkage map. Scientific Reports, 14(1), 1–24. https://doi.org/10.1038/s41598-024-67543-3

Chen, N., Zhu, J., Zhang, Y., Liu, Y., Li, J., Zu, J., & Huang, K. (2019). Nonlinear response of ecosystem respiration to multiple levels of temperature increases. Ecology and Evolution, 9(3), 925–937. https://doi.org/10.1002/ece3.4658

Demeke, B., Dejene, T., & Abebe, D. (2023). Genetic variability, heritability, and genetic advance of morphological, yield related and quality traits in upland rice (Oryza Sativa L.) genotypes at pawe, northwestern Ethiopia. Cogent Food and Agriculture, 9(1). https://doi.org/10.1080/23311932.2022.2157099

Ferrero-Serrano, Á., Chakravorty, D., Kirven, K. J., & Assmann, S. M. (2024). Oryza CLIMtools: A genome–environment association resource reveals adaptive roles for heterotrimeric G proteins in the regulation of rice agronomic traits. Plant Communications, 5(4). https://doi.org/10.1016/j.xplc.2024.100813

Hadi, B. H., Hassan, W. A., Abed, N. Y., & Wuhiab, K. M. (2019). The comparison of several methods for calculating the degree of heritability and calculating the number of genes II. Yield components. International Journal of Agricultural and Statistical Sciences, 15(2), 789–794.

Hamadani, A., Ganai, N. A., Khan, N. N., Shanaz, S., Rather, M. A., Ahmad, H. A., & Shah, R. (2023). Comparison of various models for the estimation of heritability and breeding values. Tropical Animal Health and Production, 55(4), 1–15. https://doi.org/10.1007/s11250-023-03665-6

Hidayat, R., & Adiredjo, A. L. (2020). Keragaman Genetik dan Heritabilitas Beberapa Karakter Kuantitatif pada Populasi Tanaman Padi (Oryza sativa L.) Generasi F2. Jurnal Produksi Tanaman, 8(1). https://doi.org/10.21176/PROTAN.V8I1.1325

Hüve, K., Bichele, I., Kaldmäe, H., Rasulov, B., Valladares, F., & Niinemets, Ü. (2019). Responses of Aspen Leaves to Heatflecks: Both Damaging and Non-Damaging Rapid Temperature Excursions Reduce Photosynthesis. Plants, 8(6), 145. https://doi.org/10.3390/plants8060145

Ichsan, C. N., Bakhtiar, Sabaruddin, & Efendi. (2021). Morpho-agronomic traits and balance of sink and source of rice planted on upland rainfed. IOP Conference Series: Earth and Environmental Science, 667(1). https://doi.org/10.1088/1755-1315/667/1/012108

Joshi, L. P., Sharma, S., Poudel, A., & Kandel, B. P. (2020). Varietal Evaluation and Genetic Variability in Rice (Oryza sativa L.) Genotypes of the Mid-Hill Region of Nepal. Vietnam Journal of Agricultural Sciences, 3(2), 580–592. https://doi.org/10.31817/vjas.2020.3.2.02

Kumarathunge, D. P., Drake, J. E., Tjoelker, M. G., López, R., Pfautsch, S., Vårhammar, A., & Medlyn, B. E. (2019). The temperature optima for tree seedling photosynthesis and growth depend on water inputs. Global Change Biology, gcb.14975. https://doi.org/10.1111/gcb.14975

Li, R., Huang, Y., Yang, X., Su, M., Xiong, H., Dai, Y., Wu, W., Pei, X., & Yuan, Q. (2023). Genetic Diversity and Relationship of Shanlan Upland Rice Were Revealed Based on 214 Upland Rice SSR Markers. Plants, 12(15), 1–12. https://doi.org/10.3390/plants12152876

Made, U., & Mustakim. (2023). Determination Of The Suitable Dosage Of Inorganic Fertilizer To Increase Growth And Yield Of Three Local Gogo Rice Cultivers. Agroland: The Agricultural Sciences Journal, 10(1), 41–49.

Mafaza, V. N., Handoko, H., & Adiredjo, A. L. (2019). Keragaman Genetik Karakter Morfologi Beberapa Genotip Padi Merah (Oryza sativa L.) pada Fase Vegetatif dan Generatif. Jurnal Produksi Tanaman, 6(12). https://doi.org/10.21176/PROTAN.V6I12.1053

Mudhalvan, S., Ramesh, P. K., Lakshmi, B., Vamsi, B. K., Ajmal, H., Pandiyaraj, P., & Jeyaprabha, J. (2024). A Review on Role of Wide Hybridization in Crop Improvement. International Journal of Plant & Soil Science, 36(6), 652–658. https://doi.org/10.9734/ijpss/2024/v36i64668

Mursyidin, D. H., & Khairullah, I. (2020). Genetic evaluation of tidal swamp rice from south kalimantan, indonesia based on the agro-morphological markers. Biodiversitas, 21(10), 4795–4803. https://doi.org/10.13057/biodiv/d211045

Musa, Y., Farid, M., Anshori, M. F., Maricar, M. F., Adzima, A. F., Sulaiman, A. A., Renhard, H. S., & Amier, N. (2024). Produktivitas Beberapa Varietas Padi Umur Genjah ( Oryza Sativa L .) Pada Beberapa Paket Pemupukan Berbasis IOT ( Internet of Thing ) DI Kabupaten Bone Productivity of Some Early Maturing Rice Varieties ( Oryza sativa L . ) on Some IOT-Based Fertilization. 12(1), 63–76.

Napitupulu, M., & Damanhuri, D. (2019). Keragaman Genetik, Fenotipe Dan Heritabilitas Pada Generasi F2 Hasil Persilangan Tanaman Padi (Oryza sativa L.). Jurnal Produksi Tanaman, 6(8). https://doi.org/10.21176/PROTAN.V6I8.848

Nikiéma, D., Ouoba, A., Bougma, A. L., Bonkoungou, T. O., Nikièma, P. M., Yaméogo, I., Sinaré, Y. I., & Sawadogo, N. (2024). Heritability, Stability and Path Coefficient Analysis for Grain Yield and Yield Attributing Traits in Rice Varieties under Three Irrigation Regimes in Burkina Faso. International Journal of Agriculture and Biology, 31(3), 155–166. https://doi.org/10.17957/IJAB/15.2127

Nurazizah, A., Hairmansis, A., & Damanhuri, D. (2019). Uji Daya Hasil dan Pendugaan Parameter Genetik Karakter Agronomi Genotipe Padi Gogo (Oryza sativa L.). Jurnal Produksi Tanaman, 7(12). https://doi.org/10.21176/PROTAN.V7I12.1293

Riyanto, A., Susanti, D., & Haryanto, T. A. D. (2023). Parameter Genetik Dan Analisis Hubungan Antar Sifat Pada Generasi F2 Padi Hasil Persilangan Inpari 31 X Basmati Delta 9. Jurnal Penelitian Pertanian Terapan, 23(1), 94–109. https://doi.org/10.25181/jppt.v23i1.2433

Roy, S., Patra, B. C., Kumar, J., Sar, P., Jogi, U. S., Konyak, Z., Banerjee, A., Basak, N., Mandal, N. P., & Bansal, K. C. (2024). Ethnolinguistic associations and genetic diversity of rice landraces in Nagaland, India. Plants People Planet, 6(2), 452–469. https://doi.org/10.1002/ppp3.10454

Sadiyah, H., Ashari, S., Waluyo, B., & Soegianto, A. (2021). Genetic diversity and relationship of husk tomato (Physalis spp.) from east java province revealed by ssr markers. Biodiversitas, 22(1), 184–192. https://doi.org/10.13057/biodiv/d220124

Sakran, M. R., Ghazy, M. I., Rehan, M., Alsohim, A. S., & Mansour, E. (2022). Molecular Genetic Diversity and Combining Ability for Some. Plants, 11(702), 1–24.

Sakurai, K., Hamazaki, K., Inamori, M., Kaga, A., & Iwata, H. (2024). Cross potential selection : a proposal for optimizing crossing combinations in recurrent selection using the usefulness criterion of future inbred lines. G3: Genes, Genomes, Genetics, 14(11), jkae224. https://doi.org/10.1093/g3journal/jkae224

Salsinha, Y. C. F., Maryani, Indradewa, D., Purwestri, Y. A., & Rachmawati, D. (2021). Morphological and anatomical characteristics of Indonesian rice roots from East Nusa Tenggara contribute to drought tolerance. Asian Journal of Agriculture and Biology, 2021(1), 1–11. https://doi.org/10.35495/ajab.2020.05.304

Samudin, S., Maemunah, Made, U., Ete, A., Mustakim, & Darmin, S. (2022). Correlation Analysis And Cross-Print Between The Several Characters Of Local Gogo Rice Cultivars (Oryza sativa L.). Agroland: The Agricultural Sciences Journal (e-Journal), 9(2), 89–97. https://doi.org/10.22487/agroland.v0i0.1489

Sary, D. N., Badriyah, L., Sihombing, R. D., Syauqy, T. A., Mustikarini, E. D., Prayoga, G. I., Santi, R., & Waluyo, B. (2022). Estimation of Heritability and Association Analysis of Agronomic Traits Contributing to Yield on Upland Rice (Oryza sativa L.). Plant Breeding and Biotechnology, 10(4), 232–243. https://doi.org/10.9787/PBB.2022.10.4.232

Siddique, A., Sobahan, A., Jafrin, S., & Haque, S. (2024). Study of Genetic Diversity of Aromatic Rice Genotypes Using Random Amplified Polymorphic DNA Markers. 22(3), 277–284.

Singh, Y. S. P., Bhandari, S., Ghimire, N. P., Mehata, D. K., Majhi, S. K., Bhattarai, S., Shrestha, S., Yadav, B., Chaudhary, P., & Bhujel, S. (2024). Genetic Variability, Character Association, Path Coefficient, and Diversity Analysis of Rice (Oryza sativa L.) Genotypes Based on Agro-Morphological Traits. International Journal of Agronomy, 2024(August). https://doi.org/10.1155/2024/9946332

Soemantri, A., & Ete, A. (2023). Karakteristik Morfologi Dan Fisiologi Padi Gogo (Oryza Sativa. L ) Lokal Kultivar Uva Pada Kondisi Tingkat Kelengasan Tanah Yang Berbeda. Agrotekbis : E-Jurnal Ilmu Pertanian, 11(3), 754–767. https://doi.org/10.22487/agrotekbis.v11i3.1752

Susanto, A., Prasetyo, A. E., Priwiratama, H., & Syarovi, M. (2020). Laju fotosintesis pada tanaman kelapa sawit terinfeksi karat daun Cephaleuros virescen. Jurnal Fitopatologi Indonesia, 16(1), 21–29. https://doi.org/10.14692/jfi.16.1.21-29

Tiruneh, A., A, B., & A, K. (2021). Performance Evaluation of Upland Rice ( Oryza Sativa L.) and Variability Study for Yield and Related Traits in. April. https://doi.org/10.47829/JRS.2021.1503

Tombesi, S., Cincera, I., Frioni, T., Ughini, V., Gatti, M., Palliotti, A., & Poni, S. (2019). Relationship among night temperature, carbohydrate translocation and inhibition of grapevine leaf photosynthesis. Environmental and Experimental Botany, 157, 293–298. https://doi.org/10.1016/j.envexpbot.2018.10.023

Wang, A., Jiang, Y., Shu, X., Zha, Z., Yin, D., Liu, Y., Zhang, D., Xu, D., Jiao, C., Jia, X., Ye, X., Li, S., Deng, Q., Wang, S., Zhu, J., Liang, Y., Zou, T., Liu, H., Wang, L., … Zheng, A. (2021). Genome-wide association study-based identification genes influencing agronomic traits in rice (Oryza sativa L.). Genomics, 113(3), 1396–1406. https://doi.org/10.1016/j.ygeno.2021.03.016

Published

2025-08-31

Issue

Section

Articles