Assessing Soil Nutrient and Biomass Contributions to Peatland Formation

Authors

  • M. Edi Armanto Faculty of Agriculture, Sriwijaya University, Indralaya Campus, Jl. Palembang Prabumulih Km 32, District of Ogan Ilir, South Sumatra, 30662, Indonesia
  • Elisa Wildayana Faculty of Agriculture, Sriwijaya University, Indralaya Campus, Jl. Palembang Prabumulih Km 32, District of Ogan Ilir, South Sumatra, 30662, Indonesia
  • Momon Sodik Imanudin Faculty of Agriculture, Sriwijaya University, Indralaya Campus, Jl. Palembang Prabumulih Km 32, District of Ogan Ilir, South Sumatra, 30662, Indonesia

DOI:

https://doi.org/10.18196/pt.v13i1.24233

Keywords:

Addition, Organic carbon, Peat development, Soil nutrients

Abstract

Peat formation is a key factor in carbon sequestration in  Peat Swamp Forest (PSF). The study aims to analyze alternative pathways for peat formation based on soil nutrient availability and dried biomass accumulation. A randomized complete block design was used with two treatment factors across three blocks: (A) sampling plots representing land covers and (B) dried biomass levels. Data were analyzed using two-way ANOVA and Tukey Honestly Significant Difference (HSD) test at a 5 % significance level. Results showed a high supply of dried below-ground biomass did not correspond to increased rooting litter production under high soil nutrient conditions. Instead, most of the biomass was transported upwards into above-ground biomass. All land cover types generated above-ground biomass with significant differences in peat formation potential across all measured parameters. Peat formation was strongly influenced by land cover type (e.g., peat forest), environmental factors, seed bank composition, and species competition. Restoration strategies, including revegetation, rewetting, and revitalization, are crucial to promoting the establishment of peat-forming species. This research provides valuable insights for enhancing  PSF restoration efforts and facilitating recovery toward a near-natural condition.

Author Biographies

M. Edi Armanto, Faculty of Agriculture, Sriwijaya University, Indralaya Campus, Jl. Palembang Prabumulih Km 32, District of Ogan Ilir, South Sumatra, 30662, Indonesia

Soil Department

Elisa Wildayana, Faculty of Agriculture, Sriwijaya University, Indralaya Campus, Jl. Palembang Prabumulih Km 32, District of Ogan Ilir, South Sumatra, 30662, Indonesia

Faculty of Agriculture, Sriwijaya University

Momon Sodik Imanudin, Faculty of Agriculture, Sriwijaya University, Indralaya Campus, Jl. Palembang Prabumulih Km 32, District of Ogan Ilir, South Sumatra, 30662, Indonesia

Soil Department

References

Armanto, M. E. (2019a). Comparison of chemical properties of peats under different land uses in South Sumatra, Indonesia. Journal of Ecological Engineering, 20(5), 184-192. https://doi.org/10.12911/22998993/105440

Armanto, M. E. (2019b). Improving rice yield and income of farmers by managing the soil organic carbon in South Sumatra Landscape, Indonesia. Iraqi Journal of Agricultural Sciences, 50(2), 653-661. https://doi.org/10.36103/ijas.v2i50.665

Armanto, M. E., (2019c). Soil variability and Sugarcane (Saccharum officinarum L.) biomass along Ultisol toposequences. Journal of Ecological Engineering, 20(7), 196-204. https://doi.org/10.12911/22998993/109856

Armanto, M. E., & Wildayana, E. (2022). Accessibility impacts to government programs on the household income contribution at the various livelihood sources of farmers. Agriekonomika Journal, 11(1), 62-75. https://doi.org/10.21107/agriekonomika.v11i1.13191

Armanto, M. E., & Wildayana, E. (2023). Predictive mapping for soil pH and phosphate based on kriging interpolation. Proceedings of The International Conference on Sustainable Environment, Agriculture and Tourism (ICOSEAT): Advances in Biological Sciences Research 26, 254–262. https://doi.org/10.2991/978-94-6463-086-2_33

Armanto, M. E., A. Hermawan, M. S. Imanudin, E. Wildayana, Sukardi, & A. N. Triana. (2023a). Biomass and soil nutrients turnover affected by different peat vegetation. Journal of Wetlands Environmental Management, 11(1), 31-42. http://dx.doi.org/10.20527/jwem.v11. i1.292

Armanto, M. E., Wildayana, E., & Syakina, B. (2023b). Deciphering the anthropogenic challenges of peat swamp forest degradation to improve awareness and emphasis on restoration in South Sumatra. Forestry Ideas, 29(2), 207–215. https://forestry-ideas.info/issues/issues_Index.php?journalFilter=73

Armanto, M. E., Wildayana, E., & Syakina, B. (2025a). Emphasizing local wisdom in peatland restoration in South Sumatra Indonesia. Polish Journal of Environmental Studies, 34(2), 1017-1025. https://doi.org/10.15244/pjoes/187124

Armanto, M. E., Wildayana, E., & Syakina, B. (2025b). Reimagining life quality of farmers in South Sumatra Peatlands, Indonesia. Research on World Agricultural Economy, 6(1), 146–158. https://doi.org/10.36956/rwae.v6i1.1153

Armanto, M. E., Zuhdi, M., Setiabudidaya, D., Ngudiantoro, Wildayana, E., Hermawan, A., & Imanudin, M. S. (2022). Deciphering spatial variability and kriging mapping for soil pH and groundwater levels. Suboptimal Land Journal, 11(2), 187-196. https://doi.org/10.36706/JLSO.11.2.2022.577

Armanto, M. E., Zuhdi, M., Setiabudidaya, D., Ngudiantoro, & Wildayana, E. (2024). Mapping and analyzing spatial variability of peat depths by using Geostatistics. Journal of Smart Agriculture and Environmental Technology, 2(3), 100-106. https://doi.org/10.60105/josaet.2024.2.3.100-106

Barry, K. E., Pinter, G. A., Strini, J. W., Yang, K., Lauko, I. G., Schnitzer, S. A., Clark, A. T., Cowles, J., Mori, A. S., Williams, L., Reich, P. B., & Wright, A. J. (2021). A graphical null model for scaling biodiversity-ecosystem functioning relationships. Journal of Ecology, 109(3), 1549–1560. https://doi.org/10.1111/1365-2745.13578

Byg, A., Novo, P., & Kyle, C. (2023). Caring for Cinderella - Perceptions and experiences of peatland restoration in Scotland. People Nature, 5, 302–312. https://doi.org/10.1002/pan3.10141

Hagan, J. G., Henn, J. J., & Osterman, W. H. A. (2023). Plant traits alone are good predictors of ecosystem properties when used carefully. Nature Ecology & Evolution, 7(3), 332-334. https://doi.org/10.1038/s41559-022-01920-x

He, N., Yan, P., Liu, C., Xu, L., Li, M., Van Meerbeek, K., Zhou, G., Zhou, G., Liu, S., Zhou, X., Li, S., Niu, S., Han, X., Buckley, T. N., Sack, L., & Yu, G. (2023). Predicting ecosystem productivity based on plant community traits. Trends in Plant Science, 28(1), 43–53. https://doi.org/10.1016/j.tplants.2022.08.015

Hinzke, T., Li, G., Tanneberger, F., Seeber, E., Aggenbach, C., Lange, L., Kozub, L., Knorr, K. H., Kreyling, J., & Kotowski, W. (2021a). Potentially peat-forming biomass of fen sedges increases with increasing nutrient levels. Functional Ecology, 35(7), 1579-1595. https://doi.org/10.1111/1365-2435.13803

Hinzke, T., Tanneberger, F., Aggenbach, C., Dahlke, S., Knorr, K. H., Kotowski, W. Kozub, L., Lange, J., Li, G., Pronin, E., Seeber, E., Wichtmann, W., & Kreyling, J. (2021b). Can nutrient uptake by Carex counteract eutrophication in fen peatlands?. Science of the Total Environment, 785, 147276. https://doi.org/10.1016/j.scitotenv.2021.147276

Holidi, Armanto, M. E., Damiri, N., & Putranto, D. D. A. (2019). Characteristics of selected peatland uses and soil moistures based on TVDI. Journal of Ecological Engineering, 20(4), 194-200. https://doi.org/10.12911/22998993/102987

Imanudin, M. S., Armanto, M. E., & Bakri. (2019). Determination of planting time of watermelon under a shallow groundwater table in tidal lowland agriculture areas of South Sumatra, Indonesia. Irrigation and Drainage, 68(3), 488-495. https://doi.org/10.1002/ird.2338

Jing, X., Prager, C. M., Classen, A. T., Maestre, F. T., He, J. S., & Sanders, N. J. (2020). Variation in the methods leads to variation in the interpretation of biodiversity–ecosystem multifunctionality relationships. Journal of Plant Ecology, 13(4), 431–441. https://doi.org/10.1093/jpe/rtaa031

Kaban, S., Ditya, Y. C., Makmur, S., Makri, Anggraeni, D. P., Fatah, K., Samuel, Koeshendrajana, S., Armanto, D., Armanto, M. E. & Pratiwi, M. A. (2024). Sustainable fishery and management of Batur Lake based on ecosystem approach, Bali. Journal of Infrastructure, Policy and Development, 8(11), 9112. https://doi.org/10.24294/jipd.v8i11.9112

Lázaro-Lobo, A., Ruiz-Benito, P., Cruz-Alonso, V., & Castro-Díez, P. (2023). Quantifying carbon storage and sequestration by native and non-native forests under contrasting climate types. Global Change Biology, 29(16), 4530–4542. https://doi.org/10.1111/gcb.16810

Lin, D., Dou, P., Yang, G., Qian, S., Wang, H., Zhao, L., Yang, Y., Mi, X., Ma, K., & Fanin, N. (2020). Home-field advantage of litter decomposition differs between leaves and fine roots. New Phytologist, 227, 995–1000. https://doi.org/10.1111/nph.16517

Michaelis, D., Mrotzek, A., & Couwenberg, J. (2020). Roots, tissues, cells and fragments - How to characterize peat from drained and rewetted fens. Soil Systems, 4, 12. https://doi.org/10.3390/soilsystems4010012

PMRA (Peat and Mangrove Restoration Agency). (2022). Performance report of peat and mangrove restoration agency 2022 [Laporan Kinerja Badan Restorasi Gambut dan Mangrove 2022](page 113). Peat and Mangrove Restoration Agency Indonesian. https://brgm.go.id/publikasi/

Ribeiro, K., Pacheco, F. A., Ferreira, J. W., de Sousa-Neto, E. R., Hastie, A., Filho, G. C. K., Alvalá, P. C., Forti, M. C., & Ometto, J. P. (2021). Tropical peatlands and their contribution to the global carbon cycle and climate change. Global Change Biology, 27(3), 489-505. https://doi.org/10.1111/gcb.15408

Syakina, B., Nor, R. M., & Armanto, M. E. (2024a). Elucidating indigenous farmers’ avoidance of deep peatlands for food crop farming in South Sumatra province, Indonesia. Forestry Ideas, 30(1), 3-15. https://forestry-ideas.info/issues/issues_Index.php?journalFilter=74

Syakina, B., Nor, R. M., & Armanto, M. E. (2024b). Linkages of peatland degradation and rural poverty in development scenarios of peatland restoration. Geografia-Malaysian Journal of Society and Space, 20(1), 85-98. https://doi.org/10.17576/geo-2024-2001-06

Stasiun Klimatologi Kayu Agung. (2025). Informasi curah hujan di Kabupaten Ogan Komering Ilir. https://staklim-sumsel.bmkg.go.id/normal-curah-hujan/

Wildayana, E. (2017). Challenging Constraints of livelihoods for farmers in the South Sumatra peatlands, Indonesia. Bulgarian Journal of Agricultural Science, 23(6), 894–905. https://www.agrojournal.org/23/23.htm#6

Wildayana, E., & Armanto, M. E. (2017). Agriculture phenomena and perspectives of lebak swamp in Jakabaring South Sumatra, Indonesia. Jurnal Ekonomi dan Studi Pembangunan, 9(2), 156-165. http://dx.doi.org/10.17977/um002v9i22017p156

Wildayana, E., & Armanto, M. E. (2018a). Dynamics of landuse changes and general perception of farmers on South Sumatra Wetlands. Bulgarian Journal of Agricultural Science, 24(2), 180-188. http://www.agrojournal.org/24/02-02.html

Wildayana, E., & Armanto, M. E. (2018b). Formulating popular policies for peat restoration based on the livelihoods of local farmers. Journal of Sustainable Development, 11(3), 85-95. https://doi.org/10.5539/JSD.V11N3P85

Wildayana, E., & Armanto, M. E. (2018c). Lebak swamp typology and rice production potency in South Sumatra. Agriekonomika, 7(1), 30-36. https://doi.org/10.21107/agriekonomika.v7i1.2513

Wildayana, E., & Armanto, M. E. (2018d). Utilizing non-timber extraction of swamp forests over time for rural livelihoods. Journal of Sustainable Development, 11(2), 52-62. https://doi.org/10.5539/jsd.v11n2p52

Wildayana, E., & Armanto, M. E. (2018e). Utilizing non-timber extraction of swamp forests over time for rural livelihoods. Journal of Sustainable Development, 11(2), 52-62. https://doi.org/10.5539/jsd.v11n2p52

Wildayana, E., & Armanto, M. E. (2021). Empowering indigenous farmers with fish farming on South Sumatra Peatlands. Jurnal HABITAT, 32(1), 1–10. https://doi.org/10.21776/ub.habitat.2021.032.1.1

Yan, P., Fernández-Martínez, M., Van Meerbeek, K., Yu, G., Migliavacca, M., & He, N. (2023). The essential role of biodiversity in the key axes of ecosystem function. Global Change Biology, 29(16), 4569– 4585. https://doi.org/10.1111/gcb.16666

Zhang, Y. (2023). Building a bridge between biodiversity and ecosystem multifunctionality. Global Change Biology, 29(16), 4456–4458. https://doi.org/10.1111/gcb.16729

Zuhdi, M., Armanto, M. E., Setiabudidaya, D., Ngudiantoro, & Sungkono. (2019). Exploring peat thickness variability using VLF method. Journal of Ecological Engineering, 20(5), 142-148. https://doi.org/10.12911/22998993/105361

Downloads

Published

2025-02-25

Issue

Section

Articles