Direction, Panel Height, and Tapping Frequency Affect The Daily Bark Consumption in Hevea Rubber Tapping
DOI:
https://doi.org/10.18196/pt.2019.094.58-65Keywords:
Tapping direction, tapping frequency, Hevea brasiliensis, panel height, bark consumptionAbstract
Bark consumption is defined as the thickness of sliced bark per time unit. This research, aiming to identify the effects of direction, panel height, and tapping frequency on daily bark consumption, was carried out at Sungei Putih Research Center, North Sumatera and several estates in Lampung (Kedaton, Bergen, and Way Lima) from January to March 2018. The observations involved 15 tapping tasks consisting of GT 1, PB 260, and mixed clones. Bark samples were collected from 10 randomized trees in each task. Tapping direction was distinguished as downward tapping and upward tapping, while panel height was classified into < 50 cm, 50 – 100 cm, and 100 – 130 cm in downward tapping and 130 – 150 cm, 150 – 170 cm, and >170 cm in upward tapping. Tapping frequency effect was investigated in a trial plot using frequency of once in three days (d3), once in four days (d4), once in five days (d5), once in six days (d6), and once in eight days (d8) on the basal panel (B0-2). Bark consumption was measured directly using a digital caliper. The observation result indicated that upward tapping had higher bark consumption than downward tapping. In downward tapping, the lower tapping position, the higher bark consumption would be, whilst in upward tapping, bark consumption increased along with the panel height. Low tapping frequency (d4, d5, d6, and d8) showed higher bark consumption per tapping than d3, yet they had lower cumulative bark consumption per year.
References
Adou, Y. B. C., Atsin, O. J. G., Essehi, J.-L., Ballo, K. E., Soumahin, F. E., Obouayeba, P. A., … Obouayeba, S. (2017). Latex micro diagnosis, modern management tool of rubber plantations of clones with moderate metabolism GT 1, RRIC 100 and BPM 24. Journal of Applied Biosciences, 121, 12098–12109. https://doi.org/https://dx.doi.org/10.4314/jab.v121i1.1
Chouhan, P., & Bhowmik, I. (2017). Labour market conditions of natural rubber plantations in Tripura: an Inquiry. Social Change and Development, 14, 55–69. Retrieved from https://www.okd.in/downloads/jr_17_july/article-5.pdf
Chow, K. S., Mat-Isa, M. N., Bahari, A., Ghazali, A. K., Alias, H., Mohd.-Zainuddin, Z., … Wan, K. L. (2012). Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex. Journal of Experimental Botany, 63(5), 1863–1871. https://doi.org/10.1093/jxb/err363
Herlinawati, E., & Kuswanhadi. (2012). Beberapa aspek penting pada penyadapan panel atas tanaman karet. Warta Perkaretan, 31(2), 66–74. https://doi.org/10.22302/ppk.wp.v31i2.268
Kadavil, T. G. (2012). Tapping Labour Shortage and Dilemmas in Policy Options: The Case of Rubber Smallholder Sector in Kerala. Kottayam, India: Rubber Research Institute of India. https://doi.org/10.2139/ssrn.2410142
Kudaligama, K. V. V. S., Rodrigo, V. H. L., Fernando, K. M. E. P., & Yapa, P. A. J. (2010). Response of low frequency harvesting systems of rubber under drier climatic conditions in Sri Lanka. In Proceedings of the 15th International Forestry and Environment Symposium, University of Sri Jayewardenepura. Sri Lanka, 26-27 November 2010 (pp. 62 – 69). Retrieved from http://journals.sjp.ac.lk/index.php/fesympo/article/view/163/70
Lacote, R., Doumbia, A., Obouayeba, S., & Gohet, E. (2013). Tapping panel diagnosis, decision support tool for more sustainable rubber tapping system. IRRDB-MRPPA International Workshop on The Development of Smallholder Rubber Industry in Myanmar. https://doi.org/10.13140/RG.2.1.3148.7527
Lacote, R., Obouayeba, S., Clement-Demange, A., Dian, K., Gnagne, M., & Gohet, E. (2004). Panel management in rubber (Hevea brasiliensis) tapping and impact on yield, growth, and latex diagnosis. Journal of Rubber Research, 7(3), 199–217.
Michels, T., Eschbach, J. M., Lacote, R., Benneveau, A., & Papy, F. (2012). Tapping panel diagnosis, an innovative on-farm decision support system for rubber tree tapping. Agronomy for Sustainable Development, 32(3), 791–801. https://doi.org/10.1007/s13593-011-0069-2
Obouayeba, S., Soumahin, E. F., Boko, A. M. C., Dea, G. B., Dian, K., & Gnagne, Y. M. (2008). Improvement of productivity of rubber trees in smallholding by the introduction of upward tapping in the south-east of Cote d’Ivoire. Journal of Rubber Research, 11(3), 163–170.
Priyadarshan, P. M. (2017). Biology of hevea rubber. Springer International Publishing. https://doi.org/10.1007/978-3-319-54506-6
Qi, D., Zhou, J., Xie, G., & Wu, Z. (2014). Studies on rubber (Hevea brasiliensis) trees exist plant type after planting and available tapping tree of rubber plantation in China. American Journal of Plant Sciences, 5, 3017–3021. https://doi.org/http://dx.doi.org/10.4236/ajps.2014.520318
Rahayu, M. S., Siregar, L. A. M., Purba, E., & Tistama, R. (2017). Effect of renewable bark stimulant and PEG on renewable bark growth and rubber production (Hevea brasiliensis) Clone PB 260. International Journal of Science and Research Methodology, 7(1), 71–83. Retrieved from http://ijsrm.humanjournals.com/wp-content/uploads/2017/08/6.MURNI-SARI-RAHAYU-LUTHFI-A.M.-SIREGAR-EDISON-PURBA-RADITE-TISTAMA.pdf
Ramos, M. V., Demarco, D., da Costa Souza, I. C., & de Freitas, C. D. T. (2019). Laticifers, latex, and their role in plant defense. Trends in Plant Science, 24(6), 553–567. https://doi.org/10.1016/j.tplants.2019.03.006
Sainoi, T., Sdoodee, S., Lacote, R., & Gohet, E. (2017). Low frequency tapping systems applied to young-tapped trees of Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. in Southern Thailand. Agriculture and Natural Resources, 51(4), 268–272. https://doi.org/10.1016/J.ANRES.2017.03.001
Senevirathna, A. M. W. K., Wilbert, S., Perera, S. A. P. S., & Wijesinghe, A. K. H. S. (2007). Can tapping panel dryness of rubber (Hevea brasiliensis) be minimised at field level with better management? Journal of the Rubber Research Institute of Sri Lanka, 88, 77–87. https://doi.org/10.4038/jrrisl.v88i0.1819
Siagian, N. (2017). Teknologi Memanen Lateks pada Tanaman Karet untuk Mewujudkan Produktivitas Tinggi. Yogyakarta: Lembaga Pendidikan Perkebunan.
Vijayakumar, K. R., Gohet, E., Thomas, K. U., Xiaodi, W., Sumarmadji, Rodrigo, L., … Said, M. A. M. (2009). Special communication: Revised international notation for latex harvest technology. Journal of Rubber Research, 12(2), 103–115. Retrieved from https://www.researchgate.net/publication/261141330_Revised_International_Notation_for_Latex_Harvest_Technology
Xiaodi, W., Xianzhou, X., Shiqiao, L., L, S., & Ming, W. (2008). Upward tapping in China. In Conference paper, IRRDB Workshop: Latex Harvesting Technologies, Kuala Lumpur 5 – 8 Mei 2008. Kuala Limpur: International Rubber Research and Development Board.
Downloads
Published
Issue
Section
License
PLANTA TROPIKA is committed to its authors to protect and defend their work and their reputation and takes allegations of infringement, plagiarism, ethical disputes, and fraud very seriously. PLANTA TROPIKA is published under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Authors retain copyright and grant the journal right of first publication (online and print) with the work simultaneously.
LICENSE
1. License to Publish
The non-commercial use of the article will be governed by the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). The author hereby grants PLANTA TROPIKA an exclusive publishing and distribution license in the manuscript include tables, illustrations or other material submitted for publication as part of the manuscript (the “Article”) in print, electronic and all other media (whether now known or later developed), in any form, in all languages, throughout the world, for the full term of copyright, and the right to license others to do the same, effective when the article is accepted for publication. This license includes the right to enforce the rights granted hereunder against third parties.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
Under the Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0) license, the author(s) and users are free to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material). Users must give appropriate credit, provide a link to the license, and indicate if changes were made.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale, and
- The right to self-archive the article.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by PLANTA TROPIKA or its sublicensee.
7. Miscellaneous
PLANTA TROPIKA will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and PLANTA TROPIKA or its sublicensee has become obligated to have the article published. PLANTA TROPIKA may conform the article to a style of punctuation, spelling, capitalization, and usage that it deems appropriate.