Leaf Pigment, Phenolic Content, and Production of Green Shallot of Five Different Shallot Varieties
DOI:
https://doi.org/10.18196/pt.v9i1.8045Keywords:
Anthocyanin, Carotenoid, Chlorophyll, Leaf tissue, PCAAbstract
Five shallot varieties namely ‘Bauji’, ‘Bantaeng’, ‘Tuk Tuk’, ‘Rubaru’, and ‘Palasa’ were examined for their leaf pigment, total phenolic content, leaf tissue nutrient analysis, and green shallot production. The experiment was conducted in in Cikabayan greenhouse, IPB University, Dermaga, Bogor, arranged in a randomized complete block design with single factor (variety) and three replications. The observations were carried out three times in the maximum vegetative period, consisting of 20, 30, and 40 days after planting. The result showed that ‘Palasa’ had the highest leaf pigment content, such as chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid, while the anthocyanin content fluctuated between the varieties and observation times. ‘Palasa’ also had the highest sulfur content in the leaf tissues. On the contrary, ‘Palasa’ had the lowest production compared to other the varieties. Meanwhile, ‘Bantaeng’ had the highest green shallot production, total nitrogen, and total phosphorus content in the leaf tissues. Total phenolic content fluctuated in the five varieties and observation times. The highest total phenolic content was in ‘Tuk Tuk’, observed 20 days after planting. The principal component analysis (PCA) showed that the five shallot varieties formed three clusters. The first was ‘Palasa’, the second cluster was ‘Bauji’, ‘Tuk Tuk’, and ‘Rubaru’, while the third cluster was ‘Bantaeng’. ‘Palasa’ had the highest content of leaf pigment, while Bantaeng had the highest leaf production. Leaf pigment and total phenolic content changed along with the increasing plant age in all varieties.
References
Balitbangtan, [Badan Penelitian dan Pengembangan Pertanian]. (2007). Prospek dan Arah Pengembangan Agribisnis Bawang Merah. Jakarta Selatan: Kementerian Pertanian.
Balitbangtan, [Badan Penelitian dan Pengembangan Pertanian]. (2015). Inovasi Hortikultura Pengungkit Peningkatan PenDAPatan Rakyat (I. Djatnika, M. J. A. Syah, D. Widiastoety, M. P. Yufdy, S. Prabawati, S. Pratikno, & O. Luthfiyah, Eds.). Jakarta Selatan: IAAR Press.
Baswarsiati, Sudaryono, T., Andri, K. B., & Purnomo, S. (2015). Pengembangan Varietas Bawang Merah Potensial dari Jawa Timur. Retrieved from http://hortikultura.litbang.pertanian.go.id/Buku_Inovasi/5-20.Baswarsiati Pengembangan bawang merah.pdf
Bojovic, B., & Markovic, A. (2009). Correlation between nitrogen and chlorophyll content in wheat ( Triticum aestivum L .). Kragujevac J, 31, 69–74.
Boyhand, G. E., Grandberry, D. M., & Kelley, W. T. (2009). Green Onions Commercial Vegetable Production. Retrieved from https://athenaeum.libs.uga.edu/bitstream/handle/10724/12353/C821.pdf?sequence=1&isAllowed=y
Brasileiro, B. G., Leite, J. P. V., Casali, V. W. D., Pizziolo, V. R., & Coelho, O. G. L. (2015). Acta Scientiarum The influence of planting and harvesting times on the total phenolic content and antioxidant activity of Talinum triangulare ( Jacq .) Willd. Acta Scientiarum: Agronomy, 37(2), 249–255.
Chikov, V. I. (2017). The role of source-sink relations between photosynthetic and assimilate-consuming organs in regulation of plant photosynthesis. Agri Res & Tech, 5(2), 1–11.
D’angiolillo, F., Mammano, michele massimo, & Fascella, G. (2018). Pigments, polyphenols and antioxidant activity of leaf extracts from four wild rose species grown in Sicily. Not Bot Horti Agrobo, 46(2), 402–409.
Dharma, I. P. (2016). Mengkaji hasil daun bawang merah pada jarak tanam berbeda. Retrieved from https://simdos.unud.ac.id/uploads/file_penelitian_1_dir/0f7d17659158a0e80f1730229dd5c690.pdf
El-Hamd, A. A. S. A., Mohamed, A. A. M., & El-din, M. G. Z. (2016). Effect of some Agricultural Treatments on Productivity and Quality of Green Onion for Export ( Allium Cepa L ). Middle East Journal of Agriculture Research, 5(1), 37–44.
Eviati, & Sulaeman. (2009). Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. Balai Penelitian Tanah.
Fuentealba, C., Quesille-villalobos, A. M., González-muñoz, A., Torrico, J. S., Shetty, K., Ranilla, L. G., … González-muñoz, A. (2017). Optimized methodology for the extraction of free and bound phenolic acids from Chilean Cristalino corn (Zea mays L .) accession. CyTA - Journal of Food, 15(1), 91–98.
Gogoi, M., & Basumatary, M. (2018). Estimation of the chlorophyll concentration in seven Citrus species of Kokrajhar district , BTAD , Assam , India. Tropical Plant Research, 5(1), 83–87.
Goñi, I., & Hernández-Galiot, A. (2019). Intake of nutrient and non-nutrient dietary antioxidants. contribution of macromolecular antioxidant polyphenols in an elderly mediterranean population. Nutrients, 11, 2–11.
Gutiérrez-Grijalva, E. P., Ambriz-Pére, D. L., Leyva-López, N., Castillo-López, R. I., & Heredia, J. B. (2016). Review: dietary phenolic compounds, health benefits and bioaccessibility. Archivos Latinoamericanos De Nutricion, 66(2), 87–100.
He, F., Mu, K., Yan, G. liang, Liang, N. N., Pan, Q. H., Wang, J., … Duan, C. Q. (2010). Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules, 15, 9057–9091.
Kamble, P. N., Giri, S. P., Mane, R. S., & Tiwana, A. (2015). Estimation of chlorophyll content in young and adult leaves of some selected plants. Universal Journal of Environmental Research and Technology, 5(6), 306–310.
Kuai, B., Chen, J., & Hörtensteiner, S. (2018). The biochemistry and molecular biology of chlorophyll breakdown. Journal of Experimental Botany, 69(4), 751–767.
Lombardo S, Pandino G, Mauromicale G (2018) The influence of pre-harvest factors on the quality of globe artichoke. Scientia Horticulturae 233:479-490. doi:10.1016/j.scienta.2017.12.036
Matsunaga, M. (2010). How to Factor-Analyze Your Data Right : Do’s , Don’ts , and How-To’s . International Journal of Psychological Research, 3(1), 97–110.
Muhidin, Syam’un, E., Kaimuddin, Musa, Y., Sadimantara, G., Usman, … Rakian, T. (2018). The effect of shade on chlorophyll and anthocyanin content of upland red rice. International Conference on Agriculture, Environment and Food Security, 2–6.
Nasr, S. Ben, Aazza, S., Mnif, W., & Miguel, M. (2014). Phenol content and antioxidant activity of different young and adult plant parts of tobacco from Tunisia, dried at 40 and 70 oC. Journal of Applied Pharmaceutical Science, 4(08), 23–31.
Pavlovic, D., Nikolić, B., Đurović, S., Waisi, H., Anđelković, A., & Marisavljevic. (2014). Chlorophyll as a measure of plant health : agroecological aspects. Pestic. Phytomed, 29(1), 21–34.
Piccolo, E. Lo, Landi, M., Pellegrini, E., Agati, G., Giordano, C., Giordani, T., … Massai, R. (2018). Multiple consequences induced by epidermally-located anthocyanins in young, mature and senescent leaves of Prunus. Frontiers in Plant Science, 9(917), 1–16.
Putri, F., Aziz, S. A., Andarwulan, N., & Melati, M. (2020). Growth performance of green shallot from five different varieties in Indonesia. Plant Archives, 20, 813–818.
Ramya, V., & Patel, P. (2019). Health benefits of vegetables. International Journal of Chemical Studies, 7(2), 82–87.
Sari, V., Miftahudin, & Sobir. (2017). Keragaman genetik bawang merah (Allium cepa L .) berdasarkan marka morfologi dan ISSR. J. Agron. Indonesia, 45(2), 175–181.
Sekara, A., Pokluda, R., Vacchio, L. Del, Somma, S., & Caruso, G. (2017). Interactions among genotype, environment and agronomic practices on production and quality of storage onion (Allium cepa L.) – A review. Hort. Sci. (Prague), 44(1), 21–42.
Sims, D., & Gamon, J. (2002). Relationship between leaf pigment con- tent and spectral reflectance across a wide range species, leaf structures and development stages. Remote Sensing of Environment, 81, 337–354.
Upadhyay, R. K. (2018). Plant pigments as dietary anticancer agents. International Journal of Green Pharmacy, 12(1), 2–16.
Viljevac, M., Dugalic, K., Mihaljevic, I., Simic, D., Sudar, R., Jurkovic, Z., & Lepedus, H. (2013). Chlorophyll content , photosynthetic efficiency and genetic markers in two sour cherry ( Prunus cerasus L .) genotypes under drought stress. Acta Bot. Croat, 72(2), 221–235.
White, A. C., Rogers, A., Rees, M., & Osborne, C. P. (2016). How can we make plants grow faster ? A source – sink perspective on growth rate. Journal of Experimental Botany, 67(1), 31–45.
Downloads
Published
Issue
Section
License
PLANTA TROPIKA is committed to its authors to protect and defend their work and their reputation and takes allegations of infringement, plagiarism, ethical disputes, and fraud very seriously. PLANTA TROPIKA is published under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Authors retain copyright and grant the journal right of first publication (online and print) with the work simultaneously.
LICENSE
1. License to Publish
The non-commercial use of the article will be governed by the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). The author hereby grants PLANTA TROPIKA an exclusive publishing and distribution license in the manuscript include tables, illustrations or other material submitted for publication as part of the manuscript (the “Article”) in print, electronic and all other media (whether now known or later developed), in any form, in all languages, throughout the world, for the full term of copyright, and the right to license others to do the same, effective when the article is accepted for publication. This license includes the right to enforce the rights granted hereunder against third parties.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
Under the Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0) license, the author(s) and users are free to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material). Users must give appropriate credit, provide a link to the license, and indicate if changes were made.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale, and
- The right to self-archive the article.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by PLANTA TROPIKA or its sublicensee.
7. Miscellaneous
PLANTA TROPIKA will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and PLANTA TROPIKA or its sublicensee has become obligated to have the article published. PLANTA TROPIKA may conform the article to a style of punctuation, spelling, capitalization, and usage that it deems appropriate.