Texture Profile and Pectinase Activity in Tomato Fruit (Solanum Lycopersicum, Servo F1) at Different Maturity Stages and Storage Temperatures

Angesom Asgele Gebregziabher, Supriyadi Supriyadi, Siwi Indarti, Lilis Setyowati

Abstract


The demand for daily consumption of tomato fruit is increasing immensely. Nevertheless, the fruit is exposed to mechanical damage, shrinking, and softening as the maturity stages, handling, and storage are inappropriate, thereby affecting the texture. The study aimed to assess the texture profile, pectinase activity, and physicochemical parameters in tomato fruit at different maturity stages and storage temperatures. The fruits were harvested at 1-4 weeks after pollination and stored at a temperature of 16 ºC and 25ºC. There was an increase in the redness color (a*), TSS content, weight loss, respiration rate, and ethylene production, while the hardness, lightness color (L*), pH, and TA decreased with an increase in maturity stages at different storage temperatures. The higher Polygalacturonase (PG) and Pectin methylesterase (PME) enzyme activities were observed at 25 ºC compared to storage temperature of 16 ºC. It was confirmed that pectinase activity extremely affected the texture profile. For commercial purposes, it is suggested that tomatoes are harvested at 2nd and 3rd week after pollination for long distance transportation and at 4th week for fresh consumption and stored at a temperature of 16 °C. 


Keywords


hardness; maturity stages; pectin-degrading enzymes; storage temperatures; tomato fruit

References


Abu-Sarra, A. F., & Abu-Goukh, A. A. (1992). Changes in pectinesterase, polygalacturonase and cellulase activity during mango fruit ripening. Journal of Horticultural Science, 67(4), 561–568. https://doi.org/10.1080/00221589.1992.11516284

Aday, M. S., & Caner, C. (2013). LWT - Food Science and Technology The shelf life extension of fresh strawberries using an oxygen absorber in the biobased package. LWT - Food Science and Technology, 52(2), 102–109. https://doi.org/10.1016/j.lwt.2012.06.006

Aday, M. S., Caner, C., & Rahvalı, F. (2011). Postharvest Biology and Technology Effect of oxygen and carbon dioxide absorbers on strawberry quality. Postharvest Biology and Technology, 62(2), 179–187. https://doi.org/10.1016/j.postharvbio.2011.05.002

Almeida, D. P. F., & Huber, D. J. (1999). Apoplastic pH and inorganic ion levels in tomato fruit: A potential means for regulation of cell wall metabolism during ripening. Physiologia Plantarum, 105(3), 506–512. https://doi.org/10.1034/j.1399-3054.1999.105316.x

Bianchi, T., Guerrero, L., Gratacós-Cubarsí, M., Claret, A., Argyris, J., Garcia-Mas, J., & Hortós, M. (2016). Textural properties of different melon (Cucumis melo L.) fruit types: Sensory and physical-chemical evaluation. Scientia Horticulturae, 201, 46–56. https://doi.org/10.1016/j.scienta.2016.01.028

Brackmann, A., Steffens, C. A., Andriolo, J. L., & Pinto, J. A. V. (2007). Armazenamento de tomate cultivar “Cronus” em função do estádio de maturação e da temperatura. Ciência Rural, 37(5), 1295–1300. https://doi.org/10.1590/s0103-84782007000500012

Brummell, D. A., Dal Cin, V., Crisosto, C. H., & Labavitch, J. M. (2004). Cell wall metabolism during maturation, ripening and senescence of peach fruit. Journal of Experimental Botany, 55(405), 2029–2039. https://doi.org/10.1093/jxb/erh227

Brummell, D. A., & Harpster, M. H. (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology, 47(1–2), 311–340. https://doi.org/10.1023/A:1010656104304

Bu, J., Yu, Y., Aisikaer, G., & Ying, T. (2013). Postharvest UV-C irradiation inhibits the production of ethylene and the activity of cell wall-degrading enzymes during softening of tomato (Lycopersicon esculentum L.) fruit. Postharvest Biology and Technology, 86, 337–345. https://doi.org/10.1016/j.postharvbio.2013.07.026

Calegario, F. F., Cosso, R. G., Almeida, F. V., Vercesi, A. E., & Jardim, W. F. (2001). Determination of the respiration rate of tomato fruit using flow analysis. Postharvest Biology and Technology, 22(3), 249–256. https://doi.org/10.1016/S0925-5214(01)00096-5

Cámara Hurtado, M., Greve, L. C., & Labavitch, J. M. (2002). Changes in cell wall pectins accompanying tomato (Lycopersicon esculentum Mill.) paste manufacture. Journal of Agricultural and Food Chemistry, 50(2), 273–278. https://doi.org/10.1021/jf010849e

Caner, C., Aday, M. S., & Demir, M. (2008). Extending the quality of fresh strawberries by equilibrium modified atmosphere packaging. European Food Research and Technology, 227(6), 1575–1583. https://doi.org/10.1007/s00217-008-0881-3

Chang, E.-H. H., Lee, J.-S. S., & Kim, J.-G. G. (2017). Cell wall degrading enzymes activity is altered by high carbon dioxide treatment in postharvest ‘Mihong’ peach fruit. Scientia Horticulturae, 225(March), 399–407. https://doi.org/10.1016/j.scienta.2017.07.038

Cocaliadis, M. F., Fernández-Muñoz, R., Pons, C., Orzaez, D., & Granell, A. 2010. Increasing tomato fruit quality by enhancing fruit chloroplast function: A review. Journal of Experimental Botany, 65 (16): 4589–4598. doi:10.1093/jxb/eru165.

Crookes, P. R., & Grierson, D. (1983). Ultrastructure of Tomato Fruit Ripening and the Role of Polygalacturonase Isoenzymes in Cell Wall Degradation. Plant Physiology, 72(4), 1088–1093. https://doi.org/10.1104/pp.72.4.1088

D. L. PATIL AND N. G. MAGAR. (1975). Correlation between banana fruits ripening, its texture and pectin-methyl esterase activity. Proc. Indian Acad. Sol., 81(3), 127–130.

De Oliveira, C. M., Ferreira, L. M., Do Carmo, M. G. F., & Coneglian, R. C. C. (2016). Influence of maturity stage on fruit longevity of cherry tomatoes stored at ambient and controlled temperature. Semina:Ciencias Agrarias, 37(6), 4027–4038. https://doi.org/10.5433/1679-0359.2016v37n6p4027

Deng, J., Shi, Z., Li, X., & Liu, H. (2014). Effects of cold storage and 1-methylcyclopropene treatments on ripening and cell wall degrading in rabbiteye blueberry (Vaccinium ashei) fruit. Food Science and Technology International, 20(4), 287–298. https://doi.org/10.1177/1082013213483611

Deng, Y., Wu, Y., & Li, Y. (2005). Changes in firmness, cell wall composition and cell wall hydrolases of grapes stored in high oxygen atmospheres. Food Research International, 38(7), 769–776. https://doi.org/10.1016/j.foodres.2005.03.003

aDuma, M., Alsina, I., Dubova, L., & Erdberga, I. (2017). Quality of tomatoes during storage. 130–133. https://doi.org/10.22616/foodbalt.2017.030

Fava,J., Nieto, A., Hodara, Alzamora, S .M., & Castro, M. A. (2017). A Study on Structure (Micro, Ultra, Nano), Mechanical, and Color Changes of Solanum lycopersicum L. (Cherry Tomato) Fruits Induced by Hydrogen Peroxide and Ultrasound. Food and Bioprocess Technology, 10(7), 1324-1336. http://doi.org/10.1007/s11947-017-1905-4

Fraser, P. D., Truesdale, M. R., Bird, C. R., Schuch, W., & Bramley, P. M. (1994). Carotenoid biosynthesis during tomato fruit development. Evidence for tissue-specific gene expression. Plant Physiology, 105(1), 405–413. https://doi.org/10.1104/pp.105.1.405

Gierson, D., & Kader, A. A. (1986). Fruit ripening and quality. The Tomato Crop, 241–280. https://doi.org/10.1007/978-94-009-3137-4_6

Guiné, R. P. F. (2013). Variation of textural attributes of S. Bartolomeu pears at maturation, storage, and drying. International Journal of Food Properties, 16(1), 180–192. https://doi.org/10.1080/10942912.2010.535191

Hagerman, A. E., & Austin, P. J. (1986). Continuous Spectrophotometric Assay for Plant Pectin Methyl Esterase. Journal of Agricultural and Food Chemistry, 34(3), 440–444. https://doi.org/10.1021/jf00069a015

Hailu, M., Workneh, T. S., & Belew, D. (2013). Review on postharvest technology of banana fruit. African Journal of Biotechnology, 12(7), 635–647. https://doi.org/10.5897/AJBX12.020

Huang, Y., Lu, R., & Chen, K. (2018). Assessment of tomato soluble solids content and pH by spatially-resolved and conventional Vis/NIR spectroscopy. Journal of Food Engineering, 236(May), 19–28. https://doi.org/10.1016/j.jfoodeng.2018.05.008

HUBER, D. J., KARAKURT, Y., & JEONG, J. (2005). Pectin degradation in ripening and wounded fruits. Revista Brasileira de Fisiologia Vegetal, 13(2), 224–241. https://doi.org/10.1590/s0103-31312001000200009

Inari, T., Yamauchi, R., Kato, K., & Takeuchi, T. (2002). Changes in Pectic Polysaccharides during the Ripening of Cherry Tomato Fruits. Food Science and Technology Research, 8(1), 55–58. https://doi.org/10.3136/fstr.8.55

Jaren, C., Arazuri, S., Arana , I., Arias, N., Riga, P., & Epalza, B. (2012). Detection of mealiness in tomatoes by textural analysis. Acta Horticulturae, 934 (934), 1135-1140. https://doi.org/10.17660/ActaHortic.2012.934.152

Jarvis, M. C. (1984). Structure and properties of pectin gels in plant cell walls. Plant, Cell & Environment, 7(3), 153–164. https://doi.org/10.1111/1365-3040.ep11614586

Javanmardi, J., & Kubota, C. (2006). Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biology and Technology, 41(2), 151–155. https://doi.org/10.1016/j.postharvbio.2006.03.008

Jolie, R. P., Duvetter, T., Van Loey, A. M., & Hendrickx, M. E. (2010). Pectin methylesterase and its proteinaceous inhibitor: A review. Carbohydrate Research, 345(18), 2583–2595. https://doi.org/10.1016/j.carres.2010.10.002

Kalamaki, M. S., Stoforos, N. G., & Taoukis, P. S. (2012). Pectic Enzymes in Tomatoes. Food Biochemistry and Food Processing: Second Edition, (November), 232–246. https://doi.org/10.1002/9781118308035.ch12

Kampuse, S., Kruma, Z., Dorofejeva, K., Ungure, E., & Kampuss, K. (2018). The comparison of gooseberry biochemical composition in different ripening stages. Acta Horticulturae, 1209, 157–163. https://doi.org/10.17660/ActaHortic.2018.1209.23

Kemper, W. (2018). Storage of Fruits and Vegetables. Retrieved from www.gardeninghelp.org

Koslanund, R., Archbold, D. D., & Pomper, K. W. (2005). Pawpaw [Asimina triloba (L.) Dunal] fruit ripening. II. Activity of selected cell-wall degrading enzymes. Journal of the American Society for Horticultural Science, 130(4), 643–648. https://doi.org/10.21273/jashs.130.4.643

Leonardi, C., Guichard, S., & Bertin, N. (2000). High vapour pressure deficit influences growth, transpiration and quality of tomato fruits. Scientia Horticulturae, 84(3–4), 285–296. https://doi.org/10.1016/S0304-4238(99)00127-2

Li, X., Xu, C., Korban, S. S., & Chen, K. (2010). Regulatory mechanisms of textural changes in ripening fruits. Critical Reviews in Plant Sciences, 29(4), 222–243. https://doi.org/10.1080/07352689.2010.487776

Lu, H., Li, L., Limwachiranon, J., Xie, J., & Luo, Z. (2016). Effect of UV-C on ripening of tomato fruits in response to wound. Scientia Horticulturae, 213, 104–109. https://doi.org/10.1016/j.scienta.2016.10.017

Luo, Z. (2007). Effect of 1-methylcyclopropene on ripening of postharvest persimmon (Diospyros kaki L.) fruit. LWT - Food Science and Technology, 40(2), 285–291. https://doi.org/10.1016/j.lwt.2005.10.010

Makumbele, F. P., Taylor, M., Stander, M., Anyasi, T. A., Jideani, A. I. O., & Carissa, F. (2019). Harvested at Ripe Stage of Maturation. 24(2630). https://doi.org/10.3390/molecules24142630

Moneruzzaman, K. M., Hossain, A. B. M. S., Sani, W., & Saifuddin, M. (2008). Effect of stages of maturity and ripening conditions on the physical characteristics of tomato. American Journal of Biochemistry and Biotechnology, 4(4), 329–335. https://doi.org/10.3844/ajbbsp.2008.329.335

Moreno, J., Simpson, R., Baeza, A., Morales, J., Muñoz, C., Sastry, S., & Almonacid, S. (2012). Effect of ohmic heating and vacuum impregnation on the osmodehydration kinetics and microstructure of strawberries (cv. Camarosa). LWT - Food Science and Technology, 45(2), 148–154. https://doi.org/10.1016/j.lwt.2011.09.010

NAGEL, C. W., & PATTERSON, M. E. (1967). Pectic Enzymes and Development of the Pear (Pyrus communis). Journal of Food Science, 32(3), 294–297. https://doi.org/10.1111/j.1365-2621.1967.tb01316.x

Paniagua, C., Posé, S., Morris, V. J., Kirby, A. R., Quesada, M. A., Mercado, J. A., … MOHR, W. P. (2014). Fruit softening and pectin disassembly: An overview of nanostructural pectin modifications assessed by atomic force microscopy. Annals of Botany, 114(6), 1375–1383. https://doi.org/10.1093/aob/mcu149

Park, M. H., Sangwanangkul,P., & Bae, D. R. 2018. Changes in carotenoid and chlorophyll content ofblack tomatoes (Lycopersicone sculentumL.)during storage at various temperatures. Saudi Journal of Biological Sciences, 25 (1): 57-65 . https://doi.org/10.1016/j.sjbs.2016.10.002

Pinheiro, J., Alegria< C., Abreu, M., Gonçalves, E.M., & Silva, C.L.M. 2013. Kinetics of changes in the physical quality parameters of fresh tomato fruits (Solanum lycopersicum, cv. ‘Zinac’) during storage Journal of Food Engineering 114:338–345. http://dx.doi.org/10.1016/j.jfoodeng.2012.08.024.

Ponce-Valadeza, M., Escalona-Buendíab, H. B., Villa-Hernándeza, J. M., de León-Sáncheza, F. D., Rivera-Cabreraa, F., Alia-Tejacalc, I., & Pérez-Floresa, L. J. (2016). Effect of refrigerated storage (12.5 C) on tomato (Solanum lycopersicum) fruit flavor: A biochemical and sensory analysis. Postharvest Biology and Technology 111: 6–14. http://dx.doi.org/10.1016/j.postharvbio.2015.07.010

Požrl, T., Žnidarčič, D., Kopjar, M., Hribar, J., & Simčič, M. (2010). Change of textural properties of tomatoes due to storage and storage temperatures. Journal of Food, Agriculture and Environment, 8(2), 292–296.

Rosenthal, A. J. (2010). Texture profile analysis - How important are the parameters? Journal of Texture Studies, 41(5), 672–684. https://doi.org/10.1111/j.1745-4603.2010.00248.x

Sañudo-barajas, J. A., Lipan, L., Cano-lamadrid, M., Vélez, R., Rocha, D., Noguera-artiaga, L., & Sánchez-, L. (2019). Texture. In Postharvest Physiology and Biochemistry of Fruits and Vegetables. https://doi.org/10.1016/B978-0-12-813278-4.00014-2

Sheehy, R. E., Kramer, M., & Hiatt, W. R. (1988). Reduction of polygalacturonase activity in tomato fruit by antisense RNA. Proceedings of the National Academy of Sciences, 85(23), 8805–8809. https://doi.org/10.1073/pnas.85.23.8805

Sun, Y., Kang, X., Chen, F., Liao, X., & Hu, X. (2019). Mechanisms of carrot texture alteration induced by pure e ff ect of high pressure processing. Innovative Food Science and Emerging Technologies, 54(17), 260–269. https://doi.org/10.1016/j.ifset.2018.08.012

Supriyadi, S., Suzuki, M., Wu, S., Tomita, N., Fujita, A., & Watanabe, N. (2003). Biogenesis of volatile methyl esters in snake fruit (salacca edulis, reinw) cv. Pondoh. Bioscience, Biotechnology and Biochemistry, 67(6), 1267–1271. https://doi.org/10.1271/bbb.67.1267

Supriyadi, Suhardi, Suzuki, M., Yoshida, K., Muto, T., Fujita, A., & Watanabe, N. (2002). Changes in the Volatile Compounds and in the Chemical and Pondoh during Maturation. Journal of Agriculture and Food Chemistry, 50, 7627–7633.

Szychowski, P. J., Frutos, M. J., Burló, F., Pérez-López, A. J., Carbonell-Barrachina, Á. A., & Hernández, F. (2015). Instrumental and sensory texture attributes of pomegranate arils and seeds as affected by cultivar. LWT - Food Science and Technology, 60(2), 656–663. https://doi.org/10.1016/j.lwt.2014.10.053

Taylor, N. S., Hammermeister, A. M., Vasantha Rupasinghe, H. P., & Pruski, K. (2013). Characterization of ribes nigrum in relation to fruit maturity and genotype. Acta Horticulturae, 1001, 199–206.

Chauhan, O. P., Raju, P. S., Dasgupta, D. K., & Bawa, A. S. (2006). Instrumental Textural Changes In Banana (Var. Pachbale) During Ripening Under Active And Passive Modified Atmosphere International Journal of Food Properties Instrumental, 9, 237-253. https://doi.org/ : 10.1080/10942910600596282

Tolesaa, G .N., Workneha, T .S., & Melesseb, S. F. (2018). Modelling effects of pre-storage treatments, maturity stage, low-cost storage technology environment and storage period on the quality of tomato fruit. Cyta – Journal Of Food, 16(1), 271–280. https://doi.org/10.1080/19476337.2017.1392616

Verma, C., Kumar Mani, A., & Mishra, S. (2017). Biochemical and Molecular Characterization of Cell Wall Degrading Enzyme, Pectin Methylesterase Versus Banana Ripening: An Overview. Asian Journal of Biotechnology, 9(1), 1–23. https://doi.org/10.3923/ajbkr.2017.1.23

Watson, C. F., Zheng Liansheng, & DellaPenna, D. (1994). Reduction of tomato polygalacturonase beta subunit expression affects pectin solubilization and degradation during fruit ripening. Plant Cell, 6(11), 1623–1634. https://doi.org/10.1105/tpc.6.11.1623

Wei, J., Ma, F., Shi, S., Qi, X., Zhu, X., Yuan, J., … Labavitch, J. M. (2010). Changes and postharvest regulation of activity and gene expression of enzymes related to cell wall degradation in ripening apple fruit. Postharvest Biology and Technology, 56(2), 147–154. https://doi.org/10.1016/j.postharvbio.2009.12.003

Wei, J., Qi, X., Cheng, Y., & Guan, J. (2015). Difference in activity and gene expression of pectin-degrading enzymes during softening process in two cultivars of Chinese pear fruit. Scientia Horticulturae, 197, 434–440. https://doi.org/10.1016/j.scienta.2015.10.002

Wu, X., Yu, M., Huan, C., Ma, R., & Yu. Z. 2018. Regulation of the protein and gene expressions of ethylene biosynthesis enzymes under different temperature during peach fruit ripening. Acta Physiologiae Plantarum, 40:52. https://doi.org/10.1007/s11738-018-2628-5.

Xie, F., Yuan, S., Pan, H., Wang, R., Cao, J., & Jiang, W. (2017). Effect of yeast mannan treatments on ripening progress and modification of cell wall polysaccharides in tomato fruit. Food Chemistry, 218, 509–517. https://doi.org/10.1016/j.foodchem.2016.09.086

Xin, Y., Chen, F., Yang, H., Zhang, P., Deng, Y., & Yang, B. (2010). Morphology, profile and role of chelate-soluble pectin on tomato properties during ripening. Food Chemistry, 121(2), 372–380. https://doi.org/10.1016/j.foodchem.2009.12.038

Yaman, Ö., & Bayoindirli, L. (2002). Effects of an edible coating and cold storage on shelf-life and quality of cherries. LWT - Food Science and Technology, 35(2), 146–150. https://doi.org/10.1006/fstl.2001.0827

Zahir, K., Nejib, G., Vandita, S., R, M. S., & Lyutha, A. (2013). Instrumental Texture Profile Analysis of Date-Tamarind Fruit Leather with Different Types of Hydrocolloids. 19(4), 531–538.




DOI: https://doi.org/10.18196/pt.v9i1.9139

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Angesom Asgele Gebregziabher

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





 

Editorial Office
Planta Tropika
Department of Agrotechnology, Faculty of Agriculture, Universitas Muhammadiyah Yogyakarta
Jl. Brawijaya, Tamantirto, Kasihan, Bantul, D.I. Yogyakarta, Indonesia
Phone: +62 274 387656, Ext.: 224 / +62 81329320575
Email: plantatropika@umy.ac.id
E-ISSN: 2528-7079
p-ISSN: 0216-499X

 

Creative Commons License
Planta Tropika is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.