The Effect of Tool Rotational Speed and Welding Configuration on the Mechanical Properties of High Density Polyethylene (HDPE) Plate Friction Stir Welded Joint

Aris Widyo Nugroho, Arifin Arifin, M. Rafiudin Imbaraga, Muhammad Budi Nur Rahman

Abstract


The study investigates the impact of tool rotational speed and welding configuration on the mechanical properties of friction stir welded joints of HDPE plates. The plates were cut into rectangular shapes and clamped on a metal plate for FSW welding. Two welding configurations were used: single-side welding (SS) and double-side welding (DS), with rotational speeds of 900, 1500, and 2000 rpm. The plates were subjected to tensile and bending tests, and angular distortion was also measured. The findings suggest that decreasing the tool's rotational speed to 900 rpm and using double-side welding reduces angular distortion and improves tensile and flexural strength. The study emphasizes the importance of defect reduction techniques in improving the mechanical properties of HDPE FSW joints.


Keywords


Friction stir welding; HDP;, double side welding; tensile strength; flexure strength

Full Text:

PDF

References


Abdulrehman, M. A., Salman, A. A., & Marhoon, I. I. (2023). Studying the mechanical properties of high-density polyethylene polymeric plates by friction stir welding by adding copper oxide nanoparticles. Measurement: Sensors, 27, 100770. https://doi.org/10.1016/j.measen.2023.100770

Ahmad, B., Almaskari, F., Sheikh-Ahmad, J., Deveci, S., & Khan, K. (2023). Thermomechanical modeling of material flow and weld quality in the friction stir welding of high-density polyethylene. Polymers, 15(15), 3230. https://doi.org/10.3390/polym15153230

Amjadi, M., & Fatemi, A. (2020). Tensile behavior of high-density polyethylene including the effects of processing technique, thickness, temperature, and strain rate. Polymers, 12(9), 1857. Retrieved from https://www.mdpi.com/2073-4360/12/9/1857

Arici, A., & Sinmaz, T. (2005). Effects of double passes of the tool on friction stir welding of polyethylene. Journal of Materials Science, 40(12), 3313-3316.

Azarsa, E., & Mostafapour, A. (2014). Experimental investigation on flexural behavior of friction stir welded high density polyethylene sheets. Journal of Manufacturing Processes, 16(1), 149-155. doi:https://doi.org/10.1016/j.jmapro.2013.12.003

Azhiri, R. B., Sola, J. F., Tekiyeh, R. M., Javidpour, F., & Bideskan, A. S. (2019). Analyzing of joint strength, impact energy, and angular distortion of the ABS friction stir welded joints reinforced by nanosilica addition. The International Journal of Advanced Manufacturing Technology, 100, 2269-2282. https://doi.org/10.1007/s00170-018-2761-8

Bozkurt, Y. (2012). The optimization of friction stir welding process parameters to achieve maximum tensile strength in polyethylene sheets. Materials & Design, 35, 440-445. https://doi.org/10.1016/j.matdes.2011.09.008

Derazkola, H. A., & Simchi, A. (2018). Experimental and thermomechanical analysis of the effect of tool pin profile on the friction stir welding of poly (methyl methacrylate) sheets. Journal of Manufacturing Processes, 34, 412-423. https://doi.org/10.1016/j.jmapro.2018.06.015

Inaniwa, S., Kurabe, Y., Miyashita, Y., & Hori, H. (2013). Application of friction stir welding for several plastic materials. Paper presented at the Proceedings of the 1st international joint symposium on joining and welding.

Karpat, F., & Kucukoglu, A. (2017). A review of the mechanical joining techniques for thermoplastics. Juniper Online J. Mater. Sci, 3(2), 6-7.

Lambiase, F., Grossi, V., & Paoletti, A. (2020). Effect of tilt angle in FSW of polycarbonate sheets in butt configuration. The International Journal of Advanced Manufacturing Technology, 107, 489-501. https://doi.org/10.1007/s00170-020-05106-2

Liu, F., Hovanski, Y., Miles, M., Sorensen, C., & Nelson, T. (2018). A review of friction stir welding of steels: Tool, material flow, microstructure, and properties. Journal of Materials Science & Technology, 34(1), 39-57. https://doi.org/10.1016/j.jmst.2017.10.024

Lyu, M.-Y., & Choi, T. G. (2015). Research trends in polymer materials for use in lightweight vehicles. International Journal of Precision Engineering and Manufacturing, 16(1), 213-220. https://doi.org/10.1007/s12541-015-0029-x

M. Husain, I., K. Salim, R., Azdast, T., Hasanifard, S., M. Shishavan, S., & Eungkee Lee, R. (2015). Mechanical properties of friction-stir-welded polyamide sheets. International Journal of mechanical and Materials engineering, 10, 1-8. https://doi.org/10.1186/s40712-015-0047-6

Matweb. (2024). Overview of materials for High Density Polyethylene (HDPE), Sheet/Thermoforming Grade, retrieved from https://www.matweb.com/search/datasheet_print.aspx

Mendes, N., Loureiro, A., Martins, C., Neto, P., & Pires, J. (2014). Morphology and strength of acrylonitrile butadiene styrene welds performed by robotic friction stir welding. Materials & Design, 64, 81-90. https://doi.org/10.1016/j.matdes.2014.07.047

Mirabzadeh, R., Parvaneh, V., & Ehsani, A. (2021). Estimating and optimizing the flexural strength of bonding welded polypropylene sheets by friction-stir welding method. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(1), 73-86.

Mishra, D., Sahu, S. K., Mahto, R. P., Pal, S. K., & Pal, K. (2019). Friction stir welding for joining of polymers. Paper presented at the Strengthening and Joining by Plastic Deformation: Select Papers from AIMTDR 2016.

Mishra, R. S., & Ma, Z. (2005). Friction stir welding and processing. Materials Science and Engineering: R: Reports, 50(1-2), 1-78. https://doi.org/10.1016/j.mser.2005.07.001

Mitsuboshi. (2021). https://www.mitsuboshi.com/dcms_media/other/physical_properties_hdpe_EN.pdf. In.

Moochani, A., Omidvar, H., Ghaffarian, S. R., & Goushegir, S. M. (2019). Friction stir welding of thermoplastics with a new heat-assisted tool design: Mechanical properties and microstructure. Welding in the World, 63, 181-190. https://doi.org/10.1007/s40194-018-00677-x

Nath, R. K., Jha, V., Maji, P., & Barma, J. D. (2021). A novel double-side welding approach for friction stir welding of polypropylene plate. The International Journal of Advanced Manufacturing Technology, 113(3), 691-703. doi:10.1007/s00170-021-06602-9

Payganeh, G., Arab, N. M., Asl, Y. D., Ghasemi, F., & Boroujeni, M. S. (2011). Effects of friction stir welding process parameters on appearance and strength of polypropylene composite welds. International Journal of the Physical Sciences, 6(19), 4595-4601. https://doi.org/10.5897/IJPS11.866

Pereira, M. A. R., Amaro, A. M., Reis, P. N. B., & Loureiro, A. (2021). Effect of Friction Stir Welding Techniques and Parameters on Polymers Joint Efficiency-A Critical Review. Polymers (Basel), 13(13). https://doi.org/10.3390/polym13132056

Raouache, E., Boumerzoug, Z., Rajakumar, S., & Khalfallah, F. (2018). Effect of FSW process parameters on strength and peak temperature for joining high-density polyethylene (HDPE) sheets. Revue des composites et des matériaux avancés, 28(2), 149. https://doi.org/ 10.3166/RCMA.28.149-160

Saeedy, S., & Besharati Givi, M. (2010). Experimental investigation of double side friction stir welding (FSW) on high density polyethylene blanks. Paper presented at the Engineering Systems Design and Analysis.

Schmidt, H., Hattel, J., & Wert, J. (2003). An analytical model for the heat generation in friction stir welding. Modelling and Simulation in materials science and engineering, 12(1), 143. https://doi.org/10.1088/0965-0393/12/1/013

Sharma, A. K. R., Roy Choudhury, M., & Debnath, K. (2020). Experimental investigation of friction stir welding of PLA. Welding in the World, 64, 1011-1021. https://doi.org/10.1007/s40194-020-00890-7

Stokes, V. K. (1989). Joining methods for plastics and plastic composites: An overview. Polymer Engineering & Science, 29(19), 1310-1324. https://doi.org/10.1002/pen.760291903

Strand, S. (2003). Joining plastics-can friction stir welding compete? Paper presented at the Proceedings: Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Technology Conference (Cat. No. 03CH37480).

Strand, S. R. (2004). Effects of friction stir welding on polymer microstructure: Brigham Young University.

Tiwari, S., Shukla, D. K., & Chandra, R. (2013). Friction stir welding of aluminum alloys: A review. International Journal of Materials and Metallurgical Engineering, 7(12), 2403-2408.




DOI: https://doi.org/10.18196/st.v27i1.22182

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Aris Widyo Nugroho, Arifin Arifin, M. Rafiudin Imbaraga, Muhammad Budi Nur Rahman

Editorial Office :

SEMESTA TEKNIKA

Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.

Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia

Telp:(62)274-387656, Fax.:(62)274-387656

Email: semesta_teknika@umy.ac.id, semestateknika@umy.university

Website: http://http://journal.umy.ac.id/index.php/st

Creative Commons License

Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.