Naive Bayes for Diabetes Prediction: Developing a Classification Model for Risk Identification in Specific Populations
Abstract
Keywords
Full Text:
PDFReferences
Abbas, M., Memon, K. A., Jamali, A. A., Memon, S., & Ahmed, A. (2019). Multinomial Naive Bayes classification model for sentiment analysis. IJCSNS Int. J. Comput. Sci. Netw. Secur, 19(3), 62.
Al-Mohaithef, M., Abdelmohsen, S. A., Algameel, M., & Abdelwahed, A. Y. (2022). Screening for identification of patients at high risk for diabetes-related foot ulcers: a cross-sectional study. Journal of
International Medical Research, 50(3), 03000605221087815.
Arokiasamy, P., Salvi, S., & Selvamani, Y. (2021a). Global burden of diabetes mellitus: prevalence, pattern, and trends. Handbook of Global Health, 495–538.
Arokiasamy, P., Salvi, S., & Selvamani, Y. (2021b). Global burden of diabetes mellitus. In Handbook of global health (pp. 1–44). Springer.
Association, A. D. (2019). Standards of medical care in diabetes—2019 abridged for primary care providers. Clinical Diabetes: A Publication of the American Diabetes Association, 37(1), 11.
Blanquero, R., Carrizosa, E., Ramírez-Cobo, P., & Sillero-Denamiel, M. R. (2021). Variable selection for Naïve Bayes classification. Computers & Operations Research, 135, 105456.
Charley, E., Dinner, B., Pham, K., & Vyas, N. (2023). Diabetes as a consequence of acute pancreatitis. World Journal of Gastroenterology, 29(31), 4736.
Chen, S., Webb, G. I., Liu, L., & Ma, X. (2020). A novel selective naïve Bayes algorithm. Knowledge-Based Systems, 192, 105361. https://doi.org/10.1016/j.knosys.2019.105361
Esposito, S., Toni, G., Tascini, G., Santi, E., Berioli, M. G., & Principi, N. (2019). Environmental factors associated with type 1 diabetes. Frontiers in Endocrinology, 10, 592.
Hassan, M. M., Rony, M. A. T., Khan, M. A. R., Hassan, M. M., Yasmin, F., Nag, A., Zarin, T. H., Bairagi, A. K., Alshathri, S., & El-Shafai, W. (2023). Machine Learning-Based Rainfall Prediction: Unveiling
Insights and Forecasting for Improved Preparedness. IEEE Access, 11, 132196–132222.
Janež, A., Guja, C., Mitrakou, A., Lalic, N., Tankova, T., Czupryniak, L., Tabák, A. G., Prazny, M., Martinka, E., & Smircic-Duvnjak, L. (2020). Insulin therapy in adults with type 1 diabetes mellitus: a narrative review. Diabetes Therapy, 11, 387–409.
Khursheed, R., Singh, S. K., Wadhwa, S., Kapoor, B., Gulati, M., Kumar, R., Ramanunny, A. K., Awasthi, A., & Dua, K. (2019). Treatment strategies against diabetes: Success so far and challenges ahead. European Journal of Pharmacology, 862, 172625.
Kuo, F. Y., Cheng, K.-C., Li, Y., & Cheng, J.-T. (2021). Oral glucose tolerance test in diabetes, the old method revisited. World Journal of Diabetes, 12(6), 786.
Magkos, F., Hjorth, M. F., & Astrup, A. (2020). Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nature Reviews Endocrinology, 16(10), 545–555.
Maswadi, K., Ghani, N. A., Hamid, S., & Rasheed, M. B. (2021). Human activity classification using Decision Tree and Naive Bayes classifiers. Multimedia Tools and Applications, 80, 21709–21726.
Patil, R., & Gothankar, J. (2019). Risk factors for type 2 diabetes mellitus: An urban perspective. Indian Journal of Medical Sciences, 71(1), 16–21.
Raschka, S., Patterson, J., & Nolet, C. (2020). Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence. Information, 11(4), 193.
Sousa, A. P., Cunha, D. M., Franco, C., Teixeira, C., Gojon, F., Baylina, P., & Fernandes, R. (2021). Which role plays 2-hydroxybutyric acid on insulin resistance? Metabolites, 11(12), 835.
Wickramasinghe, I., & Kalutarage, H. (2021). Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Computing, 25(3), 2277–2293.
DOI: https://doi.org/10.18196/st.v27i1.21008
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Ahmad Zaki Arrayyan, Hendra Setiawan, Karisma Trinanda Putra
Editorial Office :
SEMESTA TEKNIKA
Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.
Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia
Telp:(62)274-387656, Fax.:(62)274-387656
Email: semesta_teknika@umy.ac.id, semestateknika@umy.university
Website: http://http://journal.umy.ac.id/index.php/st
Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.