Pembuatan Aluminium Berpori dengan metode Metalurgi Serbuk Berbahan Amonium Hidrogen Karbonat ((NH4)HCO3) sebagai Space Holder beserta Karakterisasinya

Aris Widyo Nugroho, Iswanto Iswanto


The reseacrh on fabrication of porous aluminum using powder metallurgy technique with amonium hidrogen karbonat as space holder has been carried out. The space holder powder with various space holder mass fraction of 20%,30%, 40% and 50% in 5 gram of total mass and the aluminum powder were put into a can for mixing process. Afterward the mixed powder was compacted at 300 kg/cm2 to obtain the green body. Density of the green body was then determined by measuring its dimension and the mass. Following this, the green body was put in a furnace and heated up to 200oC with holding time of 60 minutes for space holder removal. The second heating up was carried out up to 650oC with holding time of 60 minutes for sintering process and the furnace was then switched off for cooling. Porosity of the sintered porous aluminum was calculated and its microstructure was examined using an optical microscop. The compressive strength of the porous material was evaluated using universal testing machine. The result show that the porosity increases with an increase of the mass fraction in the range of 56-74% with the compressive strength in opposite way. The strength was found in the range of 1.2-15.7 MPa. All specimens show a typical britlle materials.


porous aluminum, powder metallurgy space holder, ammonium hidrogen karbonat.

Full Text:



Baumeister, J., Banhart, J. & Weber, M. (1997). Aluminium foams for transport industry. Materials & Design, 18, 217-220.

Bram, M., Stiller, C., Buchkremer, H. P., Stover, D. & Baur, H. (2000). High-porosity Titanium, stainless steel, and superalloy parts. Advanced engineering materials, 2, 196-199.

Erk, K. A., Dunand, D. C. & Shull, K. R. (2008). Titanium With Controllable pore fractions by thermoreversible gelcasting of TiH2. Acta materialia, 56, 5147-5157.

Güden, M., Çelik, E. & Inodot, A. (2007). Effects of compaction pressure and particle shape on the porosity and compression mechanical properties of sintered Ti6Al4V powder compacts for hard tissue implantation. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 85, 547-555.

Hoblfeld, J., Hannemann, C., Vogel, R., Hipke, T. & Neugebauer, R. (2011). Alternative Starting Materials For The Production Of Aluminum Foam By The Powder Metallurgical Process. Production Engineering, 5, 25-30.

Ito, K. & Kobayashi, H. (2006). Production and fabrication technology development of aluminum useful for automobile lightweighting. Advanced engineering materials, 8, 828-835.

Jee, C. S. Y., Ozguven, N., Guo, Z. X. & Evans, J. R. G. (2000). Preparation of high porosity metal foam. Metallurgical Materials Transaction, 31B, 1345-1352.

Jorgensen, D. J. & Dunand, D. C. (2010). Ti-6Al-4V with micro- and macropores produced by powder sintering and electrochemical dissolution of steel wires. Materials Science and Engineering: A, 527, 849-853.

Kwok, P. J., Oppenheimer, S. M. & Dunand, D. C. (2008). Porous Titanium by electro-chemical Dissolution of Steel Space-holders. Advanced engineering materials, 10, 820-825.

Lu, T., Stone, H. & Ashby, M. (1998). Heat transfer in open-cell metal foams. Acta materialia, 46, 3619-3635.

Nansaarng, S. & Sopha, S. (2008). A synthesis of aluminium foam from ingot by compressing method. In: Proceedings of the 1st WSEAS international conference on Materials science, 2008. World Scientific and Engineering Academy and Society (WSEAS), 130-133.

Niu, W., Bai, C., Qiu, G. B. & Wang, Q. (2009). Processing and properties of porous titanium using space holder technique. Materials Science and Engineering: A, 506, 148-151.

Nugroho, A. W., Leadbeater, G. & Davies, I. J. (2011). Processing and properties of porous Ti-Nb-Ta-Zr alloy for biomedical applications using the powder metallurgy route. Australian Journal of Mechanical Engineering, 8, 169.

Nugroho, A. W. (2012). Fabrikasi Alumnium Berpori Memanjang (Elongated Pores) Menggunakan Metode Metalurgi Serbuk dengan Space Holder Pb-Sn. Laporan Hasil Penelitian, Mechanical Engineering Department, Universitas Muhammadiyah Yogyakarta.

A.W. Nugroho & Iswanto/Semesta Teknika,Vol. 21, No. 2, 141-149, November 2018

Nugroho, A. W. (2015). Morfologi dan Kuat Tekan Aluminium Berpori yang Diproduksi dengan Teknik Metalurgi Serbuk Menggunakan Urea sebagai Space Holder, Prosiding Simposium Nasional Teknologi Terapan (SNTT) 3, Makasar

Oh, I. H., Nomura, N., Masahashi, N. & Hanada, S. (2003). Mechanical properties of porous titanium compacts prepared by powder sintering. Scripta Materialia, 49, 1197-1202.

Pilon, D., Panneton, R., Sgard, F. & Lefebvre, L. P. (2004). Influence of micro-structural properties on the acoustic performances of novel metallic foams. Canadian Acoustics, 32, 24-25.

Rausch, G., Stöbener, K. and Bassan, D. , (2005), Improving Structural Crashworthiness Using Metallic Foams. In Nakajima, H. and Kanetake, N., eds. Porous Metals and Metal Foaming Technology, pp. 1-4 (The Japan Institute of Metals, Tokyo).

Sertkaya, A., Altınısık, K. & Dincer, K. (2011). Experimental investigation of thermal performance of aluminum finned heat exchangers and open-cell aluminum foam heat exchangers. Experimental Thermal and Fluid Science.

Wang, X., Li, Y., Xiong, J., Hodgson, P. D. & Wen, C. E. (2009). Porous TiNbZr alloy scaffolds for biomedical applications. Acta Biomaterialia, 5, 3616-3624.

Wen, C. E., Yamada, Y., Shimojima, K., Chino, Y., Asahina, T. & Mabuchi, M. (2001). Processing of biocompatible porous Ti and Mg. Scripta Materialia, 45, 1147-1153.


Article Metrics

Abstract view : 8 times
PDF - 7 times


  • There are currently no refbacks.

Editorial Office :


Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.

Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia

Telp:(62)274-387656, Fax.:(62)274-387656, WA: 085729357100


Website: http://

Creative Commons License

Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.