Estimasi Usia Dental Berdasarkan Pendekatan Biomolekuler

Rosalina Intan Saputri

Abstract


Estimasi usia merupakan bagian penting dalam proses identifikasi dalam praktik forensik. Gigi merupakan bagian dari tubuh manusia yang paling kuat dan tahan terhadap pengaruh lingkungan sehingga dapat digunakan sebagai salah satu variabel estimasi usia, terutama pada individu yang telah meninggal. Awalnya, studi maupun aplikasi metode estimasi usia dental umumnya menggunakan perubahan morfologi yang diamati dari gambaran radiograf berdasarkan pertumbuhan gigi geligi. Seiring dengan kemajuan teknologi, metode biomolekuler mulai berkembang dan digunakan dalam estimasi usia dental. Tinjauan pustaka ini bertujuan untuk memaparkan metode biomolekuler terkini yang dapat diaplikasikan pada gigi. Estimasi usia dental menggunakan pendekatan biomolekuler dapat diamati dari modifikasi DNA, protein, atau epigenetik. Penelitian berkatian dengan Aspartic Acid Racemization dan Metilasi DNA dengan sampel dental mulai meningkat sebagai metode yang dapat digunakan dalam aplikasi pada kasus forensik. Meskipun masih terdapat kelemahan seperti metodologi yang tidak konsisten dan akurasi yang kurang dibandingkan dengan perubahan morfologi, metode biomolekuler dapat memberikan kontribusi potensial pada estimasi usia dental.


Keywords


Analisis biomulekuler; Biologi molekuler; Estimasi usia; Estimasi usia dental; Odontologi forensik

Full Text:

PDF

References


Krishan, K., Kanchan, T., Garg, A.K. Dental Evidence in Forensic Identification – An Overview, Methodology and Present Status. Open Dent J, 2015; 9: 250–256.

Brough, A.L., Morgan, B., Rutty, G.N. Postmortem computed tomography (PMCT) and disaster victim identification. Radiol Med, 2015; 120(9): 1–9.

Franklin, D., Flavel, A., Noble J., Swift L., Karkhanis S. Forensic age estimation in living individuals : methodological considerations in the context of medico-legal practice. Research and Reports in Forensic Medical Science, 2015; 5: 53-66.

Freire-Aradas, A., Phillips, C., Lareu, M.V. Forensic individual age estimation with DNA: From initial approaches to methylation tests. Forensic Sci Rev, 2017; 29(2): 121-144.

Berkovitz, B.K.B., Holland, G.R., Moxham, B.J., Oral Anatomy, Histology, & Embryology. Edinburgh: Elsevier. pp. 442-450, 2018.

Fehrenbach, M.J., Popowics, T. Illustrated dental embryology, histology, and anatomy (4th Ed.). Missouri: Elsevier Saunders. pp. 51-76, 2016.

Kumar, R., Athota, A., Rastogi, T., Karumuri, S.K. Forensic radiology: An emerging tool in identification. J Indian Acad Oral Med Radiol, 2015; 27(3): 416–422.

Marroquin, T.Y., Karkhanis, S., Kvaal, S.I., Vasudavan, S., Kruger E., Tennant, M. Age estimation in adults by dental imaging assessment systematic review. Forensic Sci Int, 2017; 275: 203-211.

Jeon, H. M., Jang, S. M., Kim, K. H., Heo, J. Y., Ok, S. M., Jeong, S. H., & Ahn, Y. W. Dental age estimation in adults: A review of the commonly used radiological methods. J Oral Med Pain., 2014; 39(4), 119-126.

Divakar, K.P. Forensic Odontology : The New Dimension in Dental Analysis. Int J Biomed Sci, 2017; 13(1): 1–5.

Bekaert, B., Kamalandua, A., Zapico, S.C., Van de Voorde, W., Decorte, R. Improved age determination of blood and teeth samples using a selected set of DNA methylation markers. Epigenetics, 2015; 10(10): 922-930.

Shi, L., Jiang, F., Ouyang, F., Jun, Z. Genetics DNA methylation markers in combination with skeletal and dental ages to improve age estimation in children. Forensic Sci Int Genet, 2017; 33: 1–9.

Griffin, R.C., Chamberlain, A.T., Hotz, G., Penkman, K.E., Collins, M.J. Age estimation of archaeological remains using amino acid racemization in dental enamel A comparison of morphological, biochemical, and known ages‐at‐death. Am J Phys Anthropol, 2009; 140(2): 244-252.

Thomas, C., Zapico, S.C. Epigenetics: Its Role in Aging, Diseases, and Biological Age Estimation. Dalam Zapico, S.C. Mechanisms Liking Aging, Disease and Biological Age Estimation. Washington DC: CRC Press Taylor & Francis Group. pp. 245-254, 2017.

Zapico, S.C., Ubelaker, D.H. Applications of physiological bases of ageing to forensic sciences . Estimation of age-at-death. Ageing Res Rev, 2013; 12: 605–617.

Hassan, Q., Rakha, A., Bashir M.Z. Aspartic Acid Racemization with Correlation to Age : A Forensic Perspecive. JCPSP, 2017; 27(5): 283–287.

Ohtani, S., Yamamoto, T. Age Estimation by Amino Acid Racemization in Human Teeth. J Forensic Sci, 2010; 55(6): 1630–1633.

Zapico, S.C., Thomas, C., Zoppis, S. Age estimation based on molecular biology approaches. Age Estimation: A Multidisciplinary Approach. 2019; 2019: 213-223.

Zapico, S.C., Thomas, C., Menéndes, S.T. Aspartic Acid Racemization on Aging. dalam Zapico, S.C. Mechanisms Liking Aging, Disease and Biological Age Estimation. Washington DC: CRC Press Taylor&Francis Group, pp. 11-20, 2017.

Wochna, K., Bonikowski, R., Śmigielski, J., Berent, J. Aspartic acid racemization of root dentin used for dental age estimation in a Polish population sample. Forensic Sci Med Pathol, 2018; 4(3): 285-294.

Torres T, Ortiz JE, Fernández E, et al. Quaternary Geochronology Aspartic acid racemization as a dating tool for dentine : A reality. Quat Geochronol 2014; 22: 43–56.

Ajmal, M. Amino Acid Racemization from Tooth for Age Estimation- An Overview. Malays J. Forensic Sci., 2012; 3(1): 41–45.

Higgins, D., Rohrlach, A.B., Kaidonis, J., Townsend, G., Austin, J.J. Differential Nuclear and Mitochondrial DNA Preservation in Post-Mortem Teeth with Implications for Forensic and Ancient DNA Studies. PLoS One, 2015; 10(5): e0126935, 1–17.

Kanzawa-Kiriyama, H., Saso, A., Suwa, G., Saitou, N. Ancient mitochondrial DNA sequences of Jomon teeth samples from Sanganji, Tohoku district, Japan. J. Anthropol. Sci., 2013; 121(2): 89–103.

Ozga, A.T., Nieves-Colón, M.A., Honap, T.P., Sankaranarayanan, K., Hofman, C.A., Milner, G.R., Lewis Jr., C.M., Stone, A.C., Warinner, C. Successful Enrichment and Recovery of Whole Mitochondrial Genomes From Ancient Human Dental Calculus. Am J Phys Anthropol, 2016; 160(2): 220–228.

Zapico, S.C., Ubelaker, D.H. Relationship Between Mitochondrial DNA Mutations and Aging. Estimation of Age-at- death. J Gerontol A Biol Sci Med Sci, 2016; 71(4): 445–450.

Gordon, R., Zapico, S.C. Mitochondrial DNA Mutations and Mitochodrial Diseases. Dalam Zapico, S.C. Mechanisms Liking Aging, Disease and Biological Age Estimation. Washington DC: CRC Press Taylor&Francis Group. pp. 193-200, 2017.

Gustafsson, C.M., Falkenberg, M., Larsson, N.G. Maintenance and Expression of Mammalian Mitochondrial DNA. Annu Rev Biochem, 2016; 85: 133-160.

Zapico, S. C., & Ubelaker, D. H. Relationship between mitochondrial DNA mutations and aging. Estimation of age-at-death. J. Gerontol. A Biol. Sci, 2016; 71(4), 445-450.

Thomas C., Zapico, S.C. Role of Telomeres in Aging. Dalam Zapico, S.C. Mechanisms Liking Aging, Disease and Biological Age Estimation. Washington DC: CRC Press Taylor&Francis Group. pp. 141-149, 2017.

Kumei, Y., Akiyama, H., Onizuka, T., Kobayashi, C. Variation of telomeric DNA content in gingiva and dental pulp. Arch Oral Biol, 2011; 56(1): 1641–1645.

Márquez-Ruiz, A.B., González-Herrera, L., Valenzuela, A. Usefulness of telomere length in DNA from human teeth for age estimation. Int J Legal Med, 2018; 132(2): 353-359.

Takasaki, T., Tsuji, A., Ikeda, N., Ohishi, M. Age estimation in dental pulp DNA based on human telomere shortening. Int J Legal Med, 2013; 117(4): 232–234.

Adserias-Garriga, J. Forensic Application of Telomere Shortening in Age-at-Death Estimation. Dalam Zapico, S.C. Mechanisms Liking Aging, Disease and Biological Age Estimation. Washington DC: CRC Press Taylor&Francis Group. pp. 171-184, 2017.

Simm, A., Santos, A.N. Advanced Glycation Endproducts: An Introduction. Dalam Zapico, S.C. Mechanisms Liking Aging, Disease and Biological Age Estimation. Washington DC: CRC Press Taylor&Francis Group. pp. 59-67, 2017.

Ilea, A., Băbţan, A.M., Boşca, B.A., Crişan, M., Petrescu, N.B., Collino, M., Sainz, R.M., Gerlach, J.Q., Câmpian, R.S. Advanced glycation end products (AGEs) in oral pathology. Arch Oral Biol, 2018; 93: 22–30.

Miura, J., Nishikawa, K., Kubo, M., Fukushima, S., Hashimoto, M., Takeshige, F., Araki, T. Accumulation of advanced glycation end-products in human dentine. Arch Oral Biol, 2014; 59(2): 119–124.

Greis, F., Reckert, A., Fischer K., Ritz-Timme, S. Analysis of advanced glycation end products (AGEs) in dentine : useful for age estimation? Int J Legal Med, 2018; 132(3): 799–805.

Jung, S.E., Shin, K.J., Lee, H.Y. DNA methylation-based age prediction from various tissues and body fluids. BMB Rep, 2017; 50(11): 546–553.

Giuliani, C., Cilli, E., Bacalini, M.G., Pirazzini, C., Sazzini, M., Gruppioni, G., Franceschi, C., Garagnani, P., Luiselli, D. Inferring Chronological Age from DNA Methylation Patterns of Human Teeth. Am J Phys Anthropol, 2016; 159(4): 585–595.

Bekaert, B., Kamalandua, A., Zapico, S.C., Van de Voorde, W., Decorte, R. A selective set of DNA-methylation markers for age determination of blood, teeth and buccal samples. Forensic Sci Int Genet Suppl Ser, 2015; 5: e144–e145.

Ambrosi, C., Manzo, M., Baubec, T. Dynamics and context-dependent roles of DNA methylation. J Mol Biol, 2017; 429(10): 1459-1475.




DOI: https://doi.org/10.18196/di.9115

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Insisiva Dental Journal: Majalah Kedokteran Gigi Insisiva are indexed by:

 

Office:

Gedung Siti Walidah F3 4th Floor, Faculty of Dentistry Universitas Muhammadiyah Yogyakarta,
Jalan Brawijaya (Lingkar Selatan), Tamantirto, Kasihan, Bantul, Daerah Istimewa Yogyakarta, Indonesia
Phone: +62 274 387656 Ext.217
Email: jurnalkgumy@gmail.com
Website: http://journal.umy.ac.id/index.php/di/index

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA 4.0) International license.