Forecasting Fisheries Production in Indonesia

Bayu Rhamadani Wicaksono, Tendi Sutandi, Sydney Tembo

Abstract


The abundance of water resources avails Indonesia an excellent advantage in terms of the development of the capture and aquaculture fisheries. In recent years, Indonesian fish production has shown an increasing trend. The capture and aquaculture fisheries reached 6.6 million and 16.0 million tonnes respectively in 2016. The growing trend was translated into an average contribution of 2.4 percent towards the national GDP in 2013-2017. However, the absence of forecasting methods and data on fisheries production's potential growth contributes to ineffective policy interventions that require optimum production. Therefore, this study's main objective is to find the most accurate forecasting method for Indonesia's fisheries production. This research utilized the quarterly data of Indonesian fisheries production in 2000-2018 obtained from the Ministry of Marine Affairs and Fisheries. A comparative analysis of the Double Exponential and Seasonal ARIMA (SARIMA) method was undertaken to arrive at the most accurate forecasting method. The study findings broadly revealed that Indonesia's fish production was on an increasing trend, with aquaculture fisheries' contribution outweighing the capture fisheries in recent years. Furthermore, the SARIMA method was found to be the most accurate forecasting method compared to the Double Exponential method. The findings are useful for the government and related stakeholders for enhancing fish productivity in Indonesia. In addition, SARIMA methods could be used to forecast the fish production in upcoming years for better policy, strategy, and decision-making in developing the fisheries sector in Indonesia.

Keywords


Double Exponential; Fisheries Production; Seasonal Autoregressive Integrated Moving Average (SARIMA)

Full Text:

PDF

References


Akkurt, M., Demirel, O. F., & Zaim, S. (2010). Forecasting Turkey’s Natural Gas Consumption by Using Time Series Methods. European Journal of Economic and Political Studies, 3(2), 1–21. Retrieved from https://arastirmax.com/en/system/files/dergiler/25821/makaleler/3/2/arastirmax-forecasting-turkeys-natural-gas-consumption-using-time-series-methods.pdf

Azhar, M., & Riksakomara, E. (2017). Peramalan Jumlah Produksi Ikan dengan Menggunakan Backpropagation Neural Network (Studi Kasus: UPTD Pelabuhan Perikanan Banjarmasin). Jurnal Teknik ITS, 6(1), 142–148. http://dx.doi.org/10.12962/j23373539.v6i1.22129

Box, G., & Jenkins, G. (1976). Time Series Analysis: Forecasting and Control. California: Holden-Day, Inc.

BPS-Statistics Indonesia. (2018). Quarterly Indonesian Gross Domestic Product, 2014-2018. (Sub-directorate of National Product Accounts Consolidation, Ed.). Jakarta: BPS-Statistics Indonesia.

Cocon. (2017, July). The Strategic Value of Aquaculture Fisheries in Supporting Food Security. Kompas.com. Retrieved from https://ekonomi.kompas.com/read/2017/07/24/161733226/nilai-strategis-perikanan-budidaya-dalam-menopang-ketahanan-pangan

Fitri, F., Gamayanti, N. F., & Darmawan, G. (2017). Metode SSA pada Data Produksi Perikanan Tangkap di Provinsi Jawa Barat. Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP), 9(2), 95–110. https://doi.org/10.20884/1.jmp.2017.9.2.2870

Garcia, S. (1996). Indicators for Sustainable Development of Fisheries. In the 2nd World Fisheries Congress. Rome: The United Nations. Retrieved from http://www.fao.org/3/w4745e/w4745e0f.htm

Government of the Republic of Indonesia. Fishery (2004). Indonesia. Retrieved from https://www.ilo.org/dyn/natlex/docs/ELECTRONIC/89345/102625/F765882697/IDN89345 Eng.pdf

Ilah, M. (2016). Peramalan Jumlah Ekspor Indonesia pada Kelompok Komoditi Ekspor Udang Segar/Beku Dan Tongkol/Tuna dengan Metode Arima Box-Jenkins. Thesis. Institut Teknologi Sepuluh Nopember. Retrieved from http://repository.its.ac.id/584/2/1313030017-Non_Degree.pdf

Karunarathna, B., & Karunarathna, K. A. N. K. (2017). Forecasting Fish Production in Sri Lanka by Using ARIMA Model. Scholafrs Journal of Agriculture and Veterinary Sciences, 4(9), 344–349. https://doi.org/10.21276/sjavs.2017.4.9.4

Ministry of Marine Affairs and Fisheries. (2016). Ministerial Decree Roadmap for Bureaucratic Reform of the Ministry of Maritime Affairs and Fisheries 2015-2019, Pub. L. No. 4/KEPMEN-KP/2016. Indonesia: Ministry of Marine Affairs and Fisheries. Retrieved from http://jdih.kkp.go.id/peraturan/4-kepmen-kp-2016.pdf

Ministry of Marine Affairs and Fisheries. (2019a). Aquaculture Fisheries Statistics of Indonesia. (Directorate General of Aquacculture Fisheries, Ed.). Jakarta: Ministry of Marine Affairs and Fisheries.

Ministry of Marine Affairs and Fisheries. (2019b). Capture Fisheries Statistics of Indonesia. (Directorate General of Capture Fisheries, Ed.). Jakarta: Ministry of Marine Affairs and Fisheries.

Mulyana. (2004). Analysis of Time Series Data. Bandung: Padjadjaran University.

Organization for Economic Cooperation and Development (OECD). (2013). OECD Review of Fisheries: Policies and Summary Statistics 2013. Paris: OECD Publishing. http://dx.doi.org/10.1787/rev_fish-2013-en

Raman, R. K., Sathianandan, R. T. V, Sharma, A. P., & Mohanty, B. P. (2017). Modelling and Forecasting Marine Fish Production in Odisha Using Seasonal ARIMA Model. National Academy Science Letters, 40, 393–397. https://doi.org/10.1007/s40009-017-0581-2

Suman, A., Irianto, H. E., Satria, F., & Amri, K. (2016). Potensi dan Tingkat Pemanfaatan Sumber Daya Ikan di Wilayah Pengelolaan Perikanan Negara Republik Indonesia (WPP NRI) Tahun 2015 serta Opsi Pengelolaannya. Jurnal Kebijakan Perikanan Indonesia, 8(2), 97–110. https://doi.org/10.15578/jkpi.8.2.2016.97-100

Tambunan, T. (2004). Globalisasi dan Perdagangan Internasional (Globalization and International Trade). Bogor: Penerbit Ghalia Indonesia.

Tran, N., Rodriguez, U., Chan, C. Y., Philips, M. J., Mohan, V., Henriksson, P. J. G., Koeshendrajana, S., Suri, S., & Hall, S. (2017). Indonesian Aquaculture Futures : An Analysis of Fish Supply and Demand in Indonesia to 2030 and Role of Aquaculture using the AsiaFish Model. Marine Policy, 79, 25–32. https://doi.org/10.1016/j.marpol.2017.02.002

World Wildlife Fund (WWF) Indonesia. (2018). Species. Retrieved May 25, 2020, from https://www.wwf.or.id/program/spesies/

Xie, M., Hong, G. Y., & Wohlin, C. (1998). A Study of the Exponential Smoothing Technique in Software Reliability Growth Prediction. Quality and Reliability Engineering International, 13(6), 347–353. https://doi.org/10.1002/(SICI)1099-1638(199711/12)13:6%3C347::AID-QRE116%3E3.0.CO;2-O




DOI: https://doi.org/10.18196/jesp.21.2.5039

Refbacks



Copyright (c) 2020 Jurnal Ekonomi & Studi Pembangunan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 

Office:
Redaksi JESP UMY, Gedung E2 Lantai 2, Fakultas Ekonomi dan Bisnis, Universitas Muhammadiyah Yogyakarta
Jalan Brawijaya, Tamantirto, Kasihan, Bantul, Daerah Istimewa Yogyakarta 55183
Telp: (0274) 387656 ext.184
Fax: (0274) 387646
Email: jesp@umy.ac.id


Jurnal Ekonomi & Studi Pembangunan (JESP) is licensed under Creative Commons Attribution-ShareAlike 4.0 International.