The Popularity of Extension Workers in the Exchange of Information on Yard Utilization

Alia Bihrajihant Raya, Mesalia Kriska, Siti Fatonah, Riesma Andiani, Rosalia Natalia Seleky, Roso Witjaksono, Harsoyo Harsoyo

Abstract


The communication process in extension activities occurs not only between extension workers and farmers but also among extension workers. Communication among extension workers forms a social network. This study aims to analyze the popularity of extension workers within social networks in exchanging information on yard land use. The research was conducted using a qualitative approach and the whole network analysis method using Pajek 5.18 software. The research informants were extension workers in the Yogyakarta Special Region, spread across Sleman Regency, Bantul Regency, Kulon Progo Regency, Gunungkidul Regency, and Yogyakarta City. The results showed that the popular extension workers in each district/city were those from their respective districts/cities. Extension workers are popular because they have the most communication activities (in degree) or receive the most information about yard land use in social networks. Popular extension workers play an important role in social networks, such as having high closeness centrality to accelerate the flow of information and acting as intermediaries for other extension workers to control the flow of information.


Keywords


Popularity, Extension Workers, Information Exchange, Yard Utilization

Full Text:

PDF

References


Ahmad, A. (2017). Model penyuluhan partisipatif terhadap respon adopsi petani di Kabupaten Sinjai. Jurnal Agrominansia, 2(1), 1–13.

Aksu, H., Korpeoglu, I., & Ulusoy, Ö. (2019). An Analysis of Social Networks Based on Tera-Scale Telecommunication Datasets. IEEE Transactions on Emerging Topics in Computing, 7(2), 349–360. https://doi.org/10.1109/TETC.2016.2627034

Aliagan, I. Z., Ahmad, M. B., Daranijo, H. O., & Na’allah, H. M. (2023). Nigerian Agricultural Posts on Facebook and Instagram within the West African Agricultural Messaging Framework. Komunikator, 15(2), 142–155. https://doi.org/10.18196/jkm.19166

Amatulli, C., Guido, G., & Barbarito, C. M. (2014). Does popularity in social network influence purchasing and lifestyle decisions? the meaning of online friendship. Journal of Media Business Studies, 11(3), 1–21. https://doi.org/https://doi.org/10.1080/16522354.2014.11073582

Asprooth, L., Norton, M., & Galt, R. (2023). The adoption of conservation practices in the Corn Belt: the role of one formal farmer network, Practical Farmers of Iowa. Agriculture and Human Values, 40(4), 1559–1580. https://doi.org/10.1007/s10460-023-10451-5

Ataei, P., Sadighi, H., Chizari, M., & Abbasi, E. (2019). Analysis of Farmers’ Social Interactions to Apply Principles of Conservation Agriculture in Iran: Application of Social Network Analysis. Journal of Agricultural Science and Technology, 21(7), 1657–1671.

Br Ginting, A., & Kurniawati, D. (2021). Communication Strategy of Agricultural Extension to Motivating and Fostering Sustainable Food Yard Farmer Women’s Group in Binjai City. Budapest International Research and Critics Institute-Journal (BIRCI-Journal), 4(4), 8500–8512. https://doi.org/10.33258/birci.v4i4.2790

Cope, T. E., Rittman, T., Borchert, R. J., Jones, P. S., Vatansever, D., Allinson, K., Passamonti, L., Vazquez Rodriguez, P., Bevan-Jones, W. R., O’Brien, J. T., & Rowe, J. B. (2018). Tau burden and the functional connectome in Alzheimer’s disease and progressive supranuclear palsy. Brain, 141(2), 550–567. https://doi.org/10.1093/brain/awx347

Damsar, & Indrayani. (2009). Pengantar Sosiologi Ekonomi. Kencana.

Dangnga, M. S., Nuddin, A., Nanda, I., & Irwan, P. (2018). Influence of Motivation, Communication and Work Culture on the Performance of Agricultural Extension in Parepare. Proceedings of the 5th International Conference on Community Development (AMCA 2018), 703–705.

El Said, G. R. (2015). Understanding Knowledge Management System antecedents of performance impact: Extending the Task-technology Fit Model with intention to share knowledge construct. Future Business Journal, 1(1–2), 75–87. https://doi.org/10.1016/j.fbj.2015.11.003

Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195–212. https://doi.org/10.3758/s13428-017-0862-1

Eriyanto. (2014). Analisis Jaringan Komunikasi. Prenadamedia Group.

Esti, E., Hariadi, S. S., & Raya, A. B. (2020). The Effectiveness of Bhumi Merapi Agrotourism Promotion through Instagram. Komunikator, 12(2). https://doi.org/10.18196/jkm.122043

Gan, X., Chang, R., & Wen, T. (2018). Overcoming barriers to off-site construction through engaging stakeholders: A two-mode social network analysis. Journal of Cleaner Production, 201, 735–747. https://doi.org/10.1016/j.jclepro.2018.07.299

Garbach, K., & Long, R. F. (2017). Determinants of field edge habitat restoration on farms in California’s Sacramento Valley. Journal of Environmental Management, 189, 134–141. https://doi.org/10.1016/j.jenvman.2016.12.036

Gómez, G. A., García, J. F. G., Gómez, S. D. Á., & Smarandache, F. (2020). Neutrosophic Sociogram for Group Analysis. Neutrosophic Sets and Systems, 37, 411–421.

Guo, B., Yuan, L., & Lu, M. (2023). Analysis of Influencing Factors of Farmers’ Homestead Revitalization Intention from the Perspective of Social Capital. Land, 12(4). https://doi.org/10.3390/land12040812

Guo, T., Marquart-Pyatt, S. T., & Philip Robertson, G. (2023). Using three consecutive years of farmer survey data to identify prevailing conservation practices in four Midwestern US states. Renewable Agriculture and Food Systems, 38. https://doi.org/10.1017/S1742170523000364

He, Y., & Su, W. (2023). A comparative study on temporal and spatial characteristics of tourism flow in Dalian and Qingdao based on online travel notes. ICIC Express Letters, 14(3), 313–321. https://doi.org/10.24507/icicelb.14.03.313

He, Y., & Tang, P. (2023). Understanding the Role(s) of Social Networks in the Transition from Farmers’ Willingness to Behavior Regarding Withdrawal from Rural Homesteads: A Research Study Based on Typical Regions of Sichuan Province. Land, 12(8). https://doi.org/10.3390/land12081505

Hernando-Valdez, M., & delos Trinos, C. H. (2021). Bt corn growing information system in Cagayan Province, Philippines: An analysis for enhanced extension delivery service. Plant Science Today, 8(3), 445–450. https://doi.org/10.14719/PST.2021.8.3.1062

Hertanto, D., Sugiyanto, S., & Safitri, R. (2016). Analisis Struktur Jaringan Komunikasi dan Peran Aktor Dalam Penerapan Teknologi Budidaya Kentang (Petani Kentang Desa Ngantru Kecamatan Ngantang Kabupaten Malang). HABITAT, 27(2), 55–65. https://doi.org/10.21776/ub.habitat.2016.027.2.7

Irpan, M., Summantri, A., Fajar Kurniawati, M., Apriani Sukmana, R., & Shaddiq, S. (2023). Digital Communication in Agricultural Extension in the Era of the Industrial Revolution 4.0. Journal of Engineering, Management and Information Technology, 1(4), 177–190. https://doi.org/10.61552/jemit.2023.04.003

Jiang, H., Justice, L. M., Lin, T. J., Purtell, K. M., & Sun, J. (2023). Peer experiences in the preschool classroom: Contribution to Children’s academic development. Journal of Applied Developmental Psychology, 86. https://doi.org/10.1016/j.appdev.2023.101542

Jung, H., & Phoa, F. K. H. (2021). On the effects of capability and popularity on network dynamics with applications to YouTube and Twitch networks. Physica A: Statistical Mechanics and Its Applications, 571. https://doi.org/10.1016/j.physa.2020.125663

Kánská, E., Jarolímek, J., Hlavsa, T., Šimek, P., Vaněk, J., & Vogeltanzová, T. (2012). Using social networks as an integration tool in rural areas of the Czech Republic - Agricultural enterprises. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 60(4), 173–180. https://doi.org/10.11118/actaun201260040173

Khan, N., Siddiqui, B. N., Khan, N., Khan, F., Ullah, N., Ihtisham, M., Ullah, R., Ismail, S., & Muhammad, S. (2020). Analyzing mobile phone usage in agricultural modernization and rural development. International Journal of Agricultural Extension, 8(2), 139–147. https://doi.org/10.33687/ijae.008.02.3255

Khomami, M. M. D., Meybodi, M. R., & Ameri, R. (2022). Cellular goore game with application to finding maximum clique in social networks. Journal of Computational Design and Engineering, 9(3), 966–991. https://doi.org/10.1093/jcde/qwac010

Kibue, G. W., Pan, G., Joseph, S., Xiaoyu, L., Jufeng, Z., Zhang, X., & Li, L. (2015). More than two decades of climate change alarm: Farmers knowledge, attitudes and perceptions. African Journal of Agricultural Research, 10(27), 2617–2625. https://doi.org/10.5897/ajar2013.8350

Kreft, C., Angst, M., Huber, R., & Finger, R. (2023). Farmers’ social networks and regional spillover effects in agricultural climate change mitigation. Climatic Change, 176(2). https://doi.org/10.1007/s10584-023-03484-6

Kurniawan, D., Iriani, A., & Manongga, D. (2020). Pemanfaatan social network analysis (SNA) untuk menganalisis kolaborasi karyawan pada PT Arum Mandiri Group. Transformatika, 17(2), 149–159. https://doi.org/http://dx.doi.org/10.26623/transformatika.v17i2.1646

Kusumawati, N. N., & Nugraheni, A. Y. (2023). The Correlation Between Knowledge Level with Attitude and Behavior Toward the Diarrhea Self-medication Among Parents of Toddlers in Parangjoro, Grogol, Sukoharjo, Central Java, Indonesia in 2021. Proceedings of the 4th International Conference Current Breakthrough in Pharmacy (ICB-Pharma 2022), 3. https://doi.org/10.2991/978-94-6463-050-3_12

Lai, K. K., Chang, Y. H., Kumar, V., Wei, T. Y., Owad, A. Al, & Singh, S. (2024). Exploring the technological position and role of vehicle navigation companies by using patent citation network. Asia Pacific Management Review, 29(1), 17–33. https://doi.org/10.1016/j.apmrv.2023.05.001

Ma, R., & Yang, S. (2023). The Effect of Social Network on Controlled-Release Fertilizer Use: Evidence from Rice Large-Scale Farmers in Jiangsu Province, China. Sustainability (Switzerland), 15(4). https://doi.org/10.3390/su15042982

Mbugua, M., & Nzuma, J. (2020). Effect of social networks on household dietary diversity: Evidence from smallholder farmers in Kisii and Nyamira counties, Kenya. African Journal of Agricultural and Resource Economics, 15(3), 230–243.

Muller, E., & Peres, R. (2019). The effect of social networks structure on innovation performance: A review and directions for research. International Journal of Research in Marketing, 36(1), 3–19. https://doi.org/10.1016/j.ijresmar.2018.05.003

Petersen-Rockney, M., Baur, P., Guzman, A., Bender, S. F., Calo, A., Castillo, F., De Master, K., Dumont, A., Esquivel, K., Kremen, C., LaChance, J., Mooshammer, M., Ory, J., Price, M. J., Socolar, Y., Stanley, P., Iles, A., & Bowles, T. (2021). Narrow and Brittle or Broad and Nimble? Comparing Adaptive Capacity in Simplifying and Diversifying Farming Systems. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.564900

Salavati, C., Abdollahpouri, A., & Manbari, Z. (2019). Ranking nodes in complex networks based on local structure and improving closeness centrality. Neurocomputing, 336, 36–45. https://doi.org/10.1016/j.neucom.2018.04.086

Sherman, J., Burke, J. M., & Gent, D. H. (2019). Cooperation and coordination in plant disease management. Phytopathology, 109(10), 1720–1731. https://doi.org/10.1094/PHYTO-01-19-0010-R

Silondae, H., Lintang, M., & Amiruddin, A. (2021). Use of yard land as a source of nutrition and family economy during covid-19 pandemic. IOP Conference Series: Earth and Environmental Science, 807(2). https://doi.org/10.1088/1755-1315/807/2/022001

Skaalsveen, K., Ingram, J., & Urquhart, J. (2020). The role of farmers’ social networks in the implementation of no-till farming practices. Agricultural Systems, 181. https://doi.org/10.1016/j.agsy.2020.102824

Slijper, T., Urquhart, J., Poortvliet, P. M., Soriano, B., & Meuwissen, M. P. M. (2022). Exploring how social capital and learning are related to the resilience of Dutch arable farmers. Agricultural Systems, 198. https://doi.org/10.1016/j.agsy.2022.103385

Wang, G., Lu, Q., & Capared, S. C. (2020). Social network and extension service in farmers’ agricultural technology adoption efficiency. PLoS ONE, 15(7 July), 1–14. https://doi.org/10.1371/journal.pone.0235927

Wang, Z., Ali, S., Akbar, A., & Rasool, F. (2020). Determining the influencing factors of biogas technology adoption intention in Pakistan: The moderating role of social media. International Journal of Environmental Research and Public Health, 17(7). https://doi.org/10.3390/ijerph17072311

Westerman, D., Spence, P. R., & Van Der Heide, B. (2012). A social network as information: The effect of system generated reports of connectedness on credibility on Twitter. Computers in Human Behavior, 28(1), 199–206. https://doi.org/10.1016/j.chb.2011.09.001

Wu, J., Dai, L., Chiclana, F., Fujita, H., & Herrera-Viedma, E. (2018). A minimum adjustment cost feedback mechanism based consensus model for group decision making under social network with distributed linguistic trust. Information Fusion, 41, 232–242. https://doi.org/10.1016/j.inffus.2017.09.012

Yang, D., Chow, T. W. S., Zhong, L., & Zhang, Q. (2018). The competitive information spreading over multiplex social networks. Physica A: Statistical Mechanics and Its Applications, 503, 981–990. https://doi.org/10.1016/j.physa.2018.08.096

Zamasiya, B., Nyikahadzoi, K., & Mukamuri, B. B. (2017). Factors influencing smallholder farmers’ behavioural intention towards adaptation to climate change in transitional climatic zones: A case study of Hwedza District in Zimbabwe. Journal of Environmental Management, 198, 233–239. https://doi.org/10.1016/j.jenvman.2017.04.073

Zhang, H., Palomares, I., Dong, Y., & Wang, W. (2018). Managing non-cooperative behaviors in consensus-based multiple attribute group decision making: An approach based on social network analysis. Knowledge-Based Systems, 162, 29–45. https://doi.org/10.1016/j.knosys.2018.06.008

Zhao, L., Detlor, B., & Connelly, C. E. (2016). Sharing Knowledge in Social Q&A Sites: The Unintended Consequences of Extrinsic Motivation. Journal of Management Information Systems, 33(1), 70–100. https://doi.org/10.1080/07421222.2016.1172459

Zhu, B., Watts, S., & Chen, H. (2010). Visualizing social network concepts. Decision Support Systems, 49(2), 151–161. https://doi.org/10.1016/j.dss.2010.02.001

Zhu, X., & Smith, R. A. (2021). Standing out while fitting in: Examining linguistic choices by boundary spanners. Communication Monographs, 88(4), 418–439. https://doi.org/10.1080/03637751.2020.1860243




DOI: https://doi.org/10.18196/jkm.21585

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Komunikator

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 Komunikator Indexed by:

      


Komunikator Supported by:

   


Program Studi Ilmu Komunikasi Fakultas Ilmu Sosial dan Politik Universitas Muhammadiyah Yogyakarta, 

Jl. Lingkar Selatan Yogyakarta 55183 Po Box 1063, telp. (0274) 387656 pesawat 175, fax: (0274) 387646, email: jurnal.komunikator@gmail.com komunikator@umy.ac.id, website: journal.umy.ac.id


Komunikator Incorporates with:


Lisensi Creative Commons 

Komunikator is licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.