Research and Development of the Pupil Identification and Warning System using AI-IoT
Abstract
Keywords
Full Text:
PDFReferences
V. Wiley and T. Lucas, “Computer Vision and Image Processing: A Paper Review,” International Journal of Artificial Intelligence Research, vol. 2, no. 1, pp. 28-36, 2018.
S. H. Parmar, M. Jajal, and Y. P. Brijbhan, “Drowsy Driver Warning System Using Image Processing,” International Journal of Engineering Development and Research, pp. 78-83, 2013.
H. Takanashi and S. Adachi, “Development of a GUI for a system identification device using Matlab,” IFAC Proceedings Volumes, vol 39, no. 1, 2006, pp. 925-930.
Md. B. Hossain and M. S. Rahman, “A 2D-DCT Image Processing in Matlab and Voice Informatics Based Remote Home Monitoring and Security System,” International Journal of Smart Home, vol 9, no 2, pp. 69-80, 2015.
J. Nagi, S. K. Ahmed, and F. Nagi, “A MATLAB based Face Recognition System using Image Processing and Neural Networks,” 4th International Colloquium on Signal Processing and its Applications, 2008, pp. 83-88.
S. P. Namboodiri and D. Venkataraman, “A computer vision based image processing system for depression detection among students for counseling,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 14, no. 1, pp. 503-512, 2019.
Ashwin T. S, Ram Mohana Reddy Guddeti, Automatic detection of students’ affective states in classroom environment using hybrid convolutional neural networks, Education and Information Technologies, vol 25, 2020, pp. 1387-1415.
R. Wicentowski and T. Newhall, “Using image processing projects to teach CS1 topics,” Association for Computing Machinery, vol. 37, no. 1, pp. 287-291, 2005.
Q. Zhang, J. Xu, L. Xu and H. Guo, “Deep convolutional neural networks for forest fire detection,” in 2016 International Forum on Management, Education and Information Technology Application (IFMEITA 2016), 2016, pp. 568-575.
S. Frizzi, R. Kaabi, M. Bouchouicha, J. Ginoux, E. Moreau and F. Fnaiech, "Convolutional neural network for video fire and smoke detection," IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, pp. 877-882.
R. P. Sadewa, B. Irawan and C. Setianingsih, "Fire Detection Using Image Processing Techniques with Convolutional Neural Networks," 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), 2019, pp. 290-295.
B. Sreenivas and B. Narasimha Chary, “Processing of Satellite Image Using Digital Image Processing,” A world forum on Geospatial, 2011, pp. 18-21.
B. Basavaprasad and M. Ravi, “A Study on the Importance of Image Processing and Its Applications,” International Journal of Research in Engineering and Technology, vol 3, pp. 2321-7308, 2014.
Huynh Phuoc Hai, Comparison of deep learning model with other automation methods in gene expression data classification Microarray, FAIR 2017, DaNang, 2017, pp. 841-850.
Raspberry Pi Trading Ltd, Raspberry Pi4 computer Model B, https://static.raspberrypi.org, 2019.
A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” Arxiv, 2017.
EdjeElectronics, “Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi,” https://github.com/EdjeElectronics/TensorFlow-Object-Detection-on-the-Raspberry-Pi.
D. T. Toan and T. L. Vo, “A driver drowsiness and distraction warning system based on raspberry Pi 3 Kit,” Transport and Communications Science Journal, vol. 70, no. 3, pp. 184-192, 2019.
M. Sharif, M. A. Khan, T. Akram, M. Y. Javed, T. Saba, and A. Rehman, “A framework of human detection and action recognition based on uniform segmentation and combination of Euclidean distance and joint entropy-based features selection,” EURASIP Journal on Image and Video Processing, vol. 89, 2017.
E. P. Ijjina, D. Chand, S. Gupta, and G. K, Computer vision-based accident detection in traffic surveillance, in Proc. of Int. Conf. Comput. Commun. Netw. Technol., 2019
W. Rahmaniar and A. Hernawan, “Real-Time Human Detection Using Deep Learning on Embedded Platforms: A Review,” Journal of Robotics and Control (JRC), vol. 2, no. 6, 2021.
H. I. K. Fathurrahman, A. Ma’arif, and L.-Y. Chin, “The Development of Real-Time Mobile Garbage Detection Using Deep Learning,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 7, no. 3, p. 472, Jan. 2022.
D. Sharma and N. Agrawal, “Development of Modified CNN Algorithm for Agriculture Product: A Research Review,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 8, no. 1, pp. 167–174, May 2022.
S. Aulia and S. Hadiyoso, “Tuberculosis Detection in X-Ray Image Using Deep Learning Approach with VGG-16 Architecture,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 8, no. 2, pp. 290–297, Jul. 2022.
T. Kattenborn, J. Leitloff, F. Schiefer, and S. Hinz, “Review on Convolutional Neural Networks (CNN) in vegetation remote sensing,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 173, pp. 24–49, Mar. 2021, doi: 10.1016/J.ISPRSJPRS.2020.12.010.
F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 1800-1807, doi: 10.1109/CVPR.2017.195.
W. Wang, Y. Li, T. Zou, X. Wang, J. You, and Y. Luo, “A novel image classification approach via dense-mobilenet models,” Mobile Information Systems, vol. 2020, 2020, doi: 10.1155/2020/7602384.
P. N. Srinivasu, J. G. Sivasai, M. F. Ijaz, A. K. Bhoi, W. Kim, and J. J. Kang, “Classification of Skin Disease Using Deep Learning Neural Networks with MobileNet V2 and LSTM,” Sensors, vol. 21, no. 8, p. 2852, Apr. 2021, doi: 10.3390/S21082852.
Y. Li, H. Huang, Q. Xie, L. Yao, and Q. Chen, “Research on a Surface Defect Detection Algorithm Based on MobileNet-SSD,” Applied Sciences, vol. 8, no. 9, p. 1678, Sep. 2018, doi: 10.3390/APP8091678.
L. Bai, Y. Zhao, and X. Huang, “A CNN Accelerator on FPGA Using Depthwise Separable Convolution,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 10, pp. 1415–1419, Oct. 2018, doi: 10.1109/TCSII.2018.2865896.
Z. Y. Khan and Z. Niu, “CNN with depthwise separable convolutions and combined kernels for rating prediction,” Expert Systems with Applications, vol. 170, p. 114528, May 2021, doi: 10.1016/J.ESWA.2020.114528.
K. KC, Z. Yin, M. Wu, and Z. Wu, “Depthwise separable convolution architectures for plant disease classification,” Computers and Electronics in Agriculture, vol. 165, p. 104948, Oct. 2019, doi: 10.1016/J.COMPAG.2019.104948.
B. Pang, E. Nijkamp, and Y. N. Wu, “Deep Learning With TensorFlow: A Review,” Journal of Educational and Behavioral Statistics, vol. 45, no. 2, pp. 227–248, Sep. 2019, doi: 10.3102/1076998619872761.
J. Sigut, M. Castro, R. Arnay, and M. Sigut, “OpenCV Basics: A Mobile Application to Support the Teaching of Computer Vision Concepts,” IEEE Transactions on Education, vol. 63, no. 4, pp. 328–335, Nov. 2020, doi: 10.1109/TE.2020.2993013.
DOI: https://doi.org/10.18196/jrc.v3i4.14978
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Trinh Luong Mien
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com