Current Trends in Intelligent Control Neural Networks for Thermal Processing (Foods): Systematic Literature Review
Abstract
Thermal processing is a technique for sterilizing foods through heating at high temperatures. Thermal processing plays a significant role in preserving foods economically, efficiently, reliably, and safely. Control in thermal processing of foods is necessary to avoid any decrease in food quality, i.e., color change, reduced content, sensory quality, and nutrition. Artificial Neural Network (ANN) has been developed as a computing method in research and developments on thermal processing methods to discover one suitable for food processing without damaging food quality. To this date, ANN has been used in food industries for modeling many processes. The paper aims to identify the latest trend in intelligent neural network control for the thermal processing of foods. The paper conducted a systematic literature review with five research questions using Preferred Reporting Items for Systematic Review (PRISMA). According to screening results and article selection, 240 potential articles have fulfilled the inclusion criteria. Then, each article was explored to identify the advantage and the advance of intelligent network control in thermal food processing. It can be concluded that the technology in information and computations of food processing has rapidly developed and advanced through the utilization of a combination of ANN with fuzzy logic and/or genetic algorithms.
Keywords
Full Text:
PDFReferences
S. K. Amit, M. M. Uddin, R. Rahman, S. M. R. Islam, and M. S. Khan, "A review on mechanisms and commercial aspects of food preservation and processing," Agric. Food Secur., vol. 6, no. 1, pp. 1–22, 2017, doi: 10.1186/s40066-017-0130-8.
A. Studer, I. Blank, and R. H Stadler, "Thermal processing contaminants in foodstuffs and potential strategies of control," Czech J. Food Sci., vol. 22, no. SI-Chem. Reactions in Foods V, pp. S1–S10, 2018, doi: 10.17221/10600-cjfs.
F. Dewan, "Thermal Treatment of Food Preservation," Bangabandhu Sheikh Mujibur Rahman Agric. Univ., no. August, pp. 1–15, 2020, doi: 10.13140/RG.2.2.16633.49761/1.
S. Y. Leong and I. Oey, "Application of Novel Thermal Technology in Foods Processing," Foods, vol. 11, no. 1, pp. 1–5, 2022, doi: 10.3390/foods11010125.
F. Coskun and F. Pazir, "Impact of non-thermal processing technologies on quality of some fruit juices," J. Hyg. Eng. Des., pp. 18–24, 2014.
A. M. Sharoba, H. E. M. Bahlol, and A. I. El-Desouky " Establishing a schedule to determine the optimal thermal process time for some canned fruit products," Annals Of Agric. Sc., Moshtohor, vol. 45, no. 1, 2007.
C. O. Mohan, C. N. Ravishankar, J. Bindu, V. Geethalakshmi, and T. K. Srinivasa Gopal, "Effect of thermal process time on quality of 'Shrimp Kuruma' in retortable pouches and aluminum cans," J. Food Sci., vol. 71, no. 6, 2006, doi: 10.1111/j.1750-3841.2006.00099.x.
B. Ling, J. Tang, F. Kong, E. J. Mitcham, and S. Wang, "Kinetics of Food Quality Changes During Thermal Processing: a Review," Food Bioprocess Technol., vol. 8, no. 2, pp. 343–358, 2015, doi: 10.1007/s11947-014-1398-3.
Z. Escobedo-Avellaneda, M. Pateiro-Moure, N. Chotyakul, J. A. Torres, J. Welti-Chanes, and C. Pérez-Lamela, "Benefits and limitations of food processing by high-pressure technologies: Effects on functional compounds and abiotic contaminants," CYTA - J. Food, vol. 9, no. 4, pp. 351–364, 2011, doi: 10.1080/19476337.2011.616959.
S. K. Pankaj, "Thermal processing of food," Adv. Food Biotechnol., pp. 681–692, 2015, doi: 10.1002/9781118864463.ch40.
R. Simpson and C. Ramírez, "Principles of Thermal Processing of Packaged Foods," Princ. Therm. Process. Packag. Foods, 2020, doi: 10.21061/introbiosystemsengineering/food_thermal_processing.
A. Dimou, N. G. Stoforos, and S. Yanniotis, "Effect of particle orientation during thermal processing of canned peach halves: A cfd simulation," Foods, vol. 3, no. 2, pp. 304–317, 2014, doi: 10.3390/foods3020304.
E. M. Gonçalves, I. Raposo, J. Pinheiro, C. Alegria, M. Moldão, and M. Abreu, “Quality changes during thermal processing of two mixed formulas of fruits and vegetables pulps,” Emirates J. Food Agric., vol. 32, no. 4, pp. 271–280, 2020, doi: 10.9755/ejfa.2020.v32.i4.2093.
D. Jankovich, K. Osman, and V. Milković, "A new methodology for the temperature testing of thermostatic chambers used in the food-meat industry," Teh. Vjesn., vol. 25, pp. 319–325, 2018, doi: 10.17559/TV-20161117070318.
W. Zhang, H. Ma, and S. X. Yang, "An inexpensive, stable, and accurate relative humidity measurement method for challenging environments," Sensors (Switzerland), vol. 16, no. 3, pp. 1–15, 2016, doi: 10.3390/s16030398.
T. C. Polachini, L. F. L. Betiol, M. G. Bastos, V. R. N. Telis, and J. Telis-Romero, "Boiling point and specific heat of meat extract," Int. J. Food Prop., vol. 20, no. 2, pp. 1392–1402, 2017, doi: 10.1080/10942912.2017.1343350.
S. O. Arinola and K. Adesina, "Effect of Thermal Processing on the Nutritional, Antinutritional, and Antioxidant Properties of Tetracarpidium conophorum (African Walnut) ," J. Food Process., vol. 2014, pp. 1–4, 2014, doi: 10.1155/2014/418380.
F. Kong, J. Tang, B. Rasco, and C. Crapo, "Kinetics of salmon quality changes during thermal processing," J. Food Eng., vol. 83, no. 4, pp. 510–520, 2007, doi: 10.1016/j.jfoodeng.2007.04.002.
D. S. Lee, K. L. Yam, and L. Piergiovanni, "Food packaging science and technology," Food Packag. Sci. Technol., vol. 63, no. 1, pp. 1–632, 2008, doi: 10.1111/j.1471-0307.2009.00544.x.
M. Pestorić et al., "Artificial neural network model in predicting the quality of fresh tomato genotypes," Food Feed Res., vol. 48, no. 1, pp. 9–21, 2021, doi: 10.5937/ffr48-29661.
R. Dastres and M. Soori, "Artificial Neural Network Systems," Int. J. Imaging Robot., vol. 2021, no. 2, pp. 13–25, 2021.
A. N. H. Raid R. Al-Nima, Fawaz S. Abdullah, "Design a Technology Based on the Fusion of Genetic Algorithm, Neural network and Fuzzy logic," arXiv, vol. 2102.08035, 2021.
S. S. Mahmood and G. Tezel, "Solve Complex Problems using Artificial Neural Network Learned by PSO," International Conference on Engineering Technologies (ICENTE’17), December 2017.
S. Avramidis and H. Wu, "Artificial neural network and mathematical modeling comparative analysis of nonisothermal diffusion of moisture in wood," Holz als Roh - und Werkst., vol. 65, no. 2, pp. 89–93, 2007, doi: 10.1007/s00107-006-0113-0.
S. Karlovic et al., "Comparison of artificial neural network and mathematical models for drying of apple slices pretreated with high intensity ultrasound," Bulg. J. Agric. Sci., vol. 19, no. 6, pp. 1372–1377, 2013.
D. Panigrahi and M. Karuna, "International Journal of Research Publication and Reviews A Review on Leveraging Artificial Intelligence to Enhance Business Engagement in Ecommerce," Int. J. Res. Publ. Rev., vol. 2, no. 6, pp. 239–250, 2021.
K. Ishhaq, S. Akthar, "A Study on Neural Network Architectures," Computer Engineering and Intelligent Systems, vol. 7, no. 9, pp. 1–7, 2016.
M. Afaghi, H. S. Ramaswamy, and S. O. Prasher, "Thermal process calculations using artificial neural network models," Food Res. Int., vol. 34, no. 1, pp. 55–65, 2001, doi: 10.1016/S0963-9969(00)00132-0.
C. R. Chen, H. S. Ramaswamy, and S. O. Prasher, "Dynamic modeling of retort processing using neural networks," J. Food Process. Preserv., vol. 26, no. 2, pp. 91–111, 2002, doi: 10.1111/j.1745-4549.2002.tb00855.x.
M. Shahidi Noghabi, M. Kaviani, and R. Niazmdand, "Modeling of Oxidation Stability of Canola Oil Using Artificial Neural Networks during Deep Fat Frying of Potatoes," J. Food Process. Preserv., vol. 39, no. 6, pp. 1006–1015, 2015, doi: 10.1111/jfpp.12314.
X. Meng, M. Zhang, and B. Adhikari, "Prediction of storage quality of fresh-cut green peppers using artificial neural network," Int. J. Food Sci. Technol., vol. 47, no. 8, pp. 1586–1592, 2012, doi: 10.1111/j.1365-2621.2012.03007.x.
J. S. Torrecilla, L. Otero, and P. D. Sanz, "A neural network approach for thermal/pressure food processing," J. Food Eng., vol. 62, no. 1, pp. 89–95, 2004, doi: 10.1016/S0260-8774(03)00174-2.
P. Jiang et al., "Application of Artificial Neural Network in the Baking Process of Salmon," J. Food Qual., vol. 2022, 2022, doi: 10.1155/2022/3226892.
A. Perry and N. Hammond, "Systematic Reviews: The Experiences of a PhD Student," Psychol. Learn. Teach., vol. 2, no. 1, pp. 32–35, 2002, doi: 10.2304/plat.2002.2.1.32.
S. C. Vasconcelos, I. da S. Frazão, E. M. L. M. Monteiro, M. D. da C. Lima, J. F. de Albuquerque, and V. P. Ramos, “Nursing Interventions for Drug Users: Qualitative Meta-Synthesis,” Am. J. Nurs. Res., vol. 1, no. 1, pp. 24–27, 2013, doi: 10.12691/ajnr-1-1-4.
F. Breidt, K. P. Sandeep, F. M. Arritt, U. Ars, S. Hall, and N. Carolina, "Use of Linear Models for Thermal Processing of Acidified Foods," Food Prot. Trends, vol. 30, no. 5, pp. 268–272, 2010.
F. V. M. Silva, P. A. Gibbs, H. Nuñez, S. Almonacid, and R. Simpson, "Thermal Processes: Pasteurization," Encycl. Food Microbiol. Second Ed., vol. 3, pp. 577–595, 2014, doi: 10.1016/B978-0-12-384730-0.00404-3.
N. G. Stoforos, “Thermal processing,” Handb. Food Process. Food Preserv., pp. 27–56, 2015, doi: 10.1201/b19397.
M. van Boekel et al., "A review on the beneficial aspects of food processing," Mol. Nutr. Food Res., vol. 54, no. 9, pp. 1215–1247, 2010, doi: 10.1002/mnfr.200900608.
P. J. Fellows, Heat sterilisation, Food Processing Technology (Third edition), 2009.
G. Albaali and M. M. Farid, "Sterilization Of Food In Retort Pouches," Steriliz. Food Retort Pouches, no. December 2015, pp. 0–16, 2006, doi: 10.1007/0-387-31129-7.
F. Tang, W. Xia, Y. Xu, Q. Jiang, W. Zhang, and L. Zhang, "Effect of thermal sterilization on the selected quality attributes of sweet and sour carp," Int. J. Food Prop., vol. 17, no. 8, pp. 1828–1840, 2014, doi: 10.1080/10942912.2012.745130.
C. Hanson, E. Lyden, J. Furtado, M. Van Ormer, and A. Anderson-Berry, "A comparison of nutritional antioxidant content in breast milk, donor milk, and infant formulas," Nutrients, vol. 8, no. 11, pp. 1–9, 2016, doi: 10.3390/nu8110681.
R. Simpson et al., Assessment and outlook of variable retort temperature profiles for the thermal processing of packaged foods: Plant productivity, product quality, and energy consumption, vol. 275. 2020.
A. Abakarov, Y. Sushkov, and R. H. Mascheroni, "A multi-criteria optimization and decision-making approach for improvement of food engineering processes," Int. J. Food Stud., vol. 2, no. 1, pp. 1–21, 2013, doi: 10.7455/ijfs/2.1.2013.a1.
F. Erdoǧdu, D. A. Luzuriaga, M. O. Balaban, and K. V. Chau, "A predictive model on moisture and yield loss in phosphate-treated, cooked tiger shrimp (penaeus monodon)," J. Aquat. Food Prod. Technol., vol. 10, no. 2, pp. 31–45, 2001, doi: 10.1300/J030v10n02_04.
R. J. Simpson, S. F. Almonacid, and A. A. Teixeira, "Automatic control of batch thermal processing of canned foods," Robot. Autom. Food Ind. Curr. Futur. Technol., no. October 2020, pp. 420–440, 2012, doi: 10.1533/9780857095763.2.420.
P. Dumalisile, R. C. Witthuhn, and T. J. Britz, "Impact of different pasteurization temperatures on the survival of microbial contaminants isolated from pasteurized milk," Int. J. Dairy Technol., vol. 58, no. 2, pp. 74–82, 2005, doi: 10.1111/j.1471-0307.2005.00189.x.
M. F. Atia, M. M. Mostafa, M. A. El-Nono, and M. F. Abdel-Salam, "Milk Pasteurization Using Solar Concentrator With Tracking Device," Misr J. Agric. Eng., vol. 33, no. 3, pp. 915–932, 2016, doi: 10.21608/mjae.2016.97753.
H. Zhang, A. Mohamed, T. Breikin, and M. Howarth, "Modelling and Simulation of an Ohmic Heating Process," Open J. Model. Simul., vol. 09, no. 01, pp. 26–42, 2021, doi: 10.4236/ojmsi.2021.91002.
K. S. Varghese, M. C. Pandey, K. Radhakrishna, and A. S. Bawa, "Technology, applications and modelling of ohmic heating: a review," J. Food Sci. Technol., vol. 51, no. 10, pp. 2304–2317, 2014, doi: 10.1007/s13197-012-0710-3.
Z. T. Alkanan, A. B. Altemimi, A. R. S. Al-Hilphy, D. G. Watson, and A. Pratap-Singh, "Ohmic heating in the food industry: Developments in concepts and applications during 2013–2020," Appl. Sci., vol. 11, no. 6, 2021, doi: 10.3390/app11062507.
T. M. Osaili, "Developments in the Thermal Processing of Food," Prog. Food Preserv., pp. 211–230, 2012, doi: 10.1002/9781119962045.ch10.
G. B. Awuah, H. S. Ramaswamy, A. Economides, and K. Mallikarjunan, "Inactivation of Escherichia coli K-12 and Listeria innocua in milk using radio frequency (RF) heating," Innov. Food Sci. Emerg. Technol., vol. 6, no. 4, pp. 396–402, 2005, doi: 10.1016/j.ifset.2005.06.002.
C. Anandharamakrishnan and S. P. Ishwarya, Thermal Processing of Foods. 2019.
R. Kaur, K. Gul, and A. K. Singh, "Nutritional impact of ohmic heating on fruits and vegetables—A review," Cogent Food Agric., vol. 2, no. 1, pp. 1–41, 2016, doi: 10.1080/23311932.2016.1159000.
B. Jan, R. Shams, Q. E. H. Rizvi, and A. Manzoor, "Ohmic heating technology for food processing: a review of recent developments," J. Postharvest Technol., vol. 9, no. 1, pp. 20–34, 2021.
R. Richa et al., "Ohmic Heating Technology and Its Application in Meaty Food: A Review," Adv. Res., vol. 10, no. 4, pp. 1–10, 2017, doi: 10.9734/air/2017/33799.
T. Lafarga, A. V. Queralt, G. Bobo, M. Abadias, and I. Aguiló‐Aguayo, "Thermal Processing Technologies," Food Formul., no. Richardson 2001, pp. 165–181, 2021, doi: 10.1002/9781119614760.ch9.
M. S. Rahman, M. M. Rashid, and M. A. Hussain, "Thermal conductivity prediction of foods by Neural Network and Fuzzy (ANFIS) modeling techniques," Food Bioprod. Process., vol. 90, no. 2, pp. 333–340, 2012, doi: 10.1016/j.fbp.2011.07.001.
J. Nayak, K. Vakula, P. Dinesh, B. Naik, and D. Pelusi, "Intelligent food processing: Journey from artificial neural network to deep learning," Comput. Sci. Rev., vol. 38, p. 100297, 2020, doi: 10.1016/j.cosrev.2020.100297.
G. V. S. Bhagya Raj and K. K. Dash, "Comprehensive study on applications of artificial neural network in food process modeling," Crit. Rev. Food Sci. Nutr., vol. 62, no. 10, pp. 2756–2783, 2022, doi: 10.1080/10408398.2020.1858398.
H. Technology, "Local Temperature Using Control a Neural within Network a Confined Model Space by Noriko 1Graduate School of Agricultural and Life Sciences , The University of Tbkyo , 1-1-1 Yayoi Bunkyo-ku , Tokyo 113-8657 , Japan 2Graduate School of Agriculture and Biol," 2002.
R. P. F. Guiné, "The Use of Artificial Neural Networks (ANN) in Food Process Engineering," ETP Int. J. Food Eng., vol. 5, no. 1, pp. 15–21, 2019, doi: 10.18178/ijfe.5.1.15-21.
D. A. Correa, P. M. Montero Castillo, and R. J. Martelo, "Neural networks in food industry," Contemp. Eng. Sci., vol. 11, no. 37, pp. 1807–1826, 2018, doi: 10.12988/ces.2018.84141.
P. Kongwong, D. Boonyakiat, I. Pongsirikul, and P. Poonlarp, "Application of artificial neural networks for predicting parameters of commercial vacuum cooling process of baby cos lettuce," J. Food Process Eng., vol. 44, no. 5, pp. 1–12, 2021, doi: 10.1111/jfpe.13674.
E. Funes, Y. Allouche, G. Beltrán, and A. Jiménez, “A Review: Artificial Neural Networks as Tool for Control Food Industry Process,” J. Sens. Technol., vol. 05, no. 01, pp. 28–43, 2015, doi: 10.4236/jst.2015.51004.
A. Duykuluoğlu, "The Significance of Artificial Neural Networks in Educational Research : A Summary of Research and Literature," vol. 2, no. 2, pp. 107–116, 2021.
P. P. Tripathy and S. Kumar, "Neural network approach for food temperature prediction during solar drying," Int. J. Therm. Sci., vol. 48, no. 7, pp. 1452–1459, 2009, doi: 10.1016/j.ijthermalsci.2008.11.014.
Y. Huang, L. J. Kangas, and B. A. Rasco, "Applications of Artificial Neural Networks (ANNs) in food science," Crit. Rev. Food Sci. Nutr., vol. 47, no. 2, pp. 113–126, 2007, doi: 10.1080/10408390600626453.
N. Behroozi Khazaei, T. Tavakoli, H. Ghassemian, M. H. Khoshtaghaza, and A. Banakar, "Applied machine vision and artificial neural network for modeling and controlling of the grape drying process," Comput. Electron. Agric., vol. 98, pp. 205–213, 2013, doi: 10.1016/j.compag.2013.08.010.
M. Aktaş, I. Ceylan, and S. Yilmaz, "Determination of drying characteristics of apples in a heat pump and solar dryer," Desalination, vol. 239, no. 1–3, pp. 266–275, 2009, doi: 10.1016/j.desal.2008.03.023.
R. P. F. Guiné, "The Use of Artificial Neural Networks (ANN) in Food Process Engineering," ETP Int. J. Food Eng., no. March, pp. 15–21, 2019, doi: 10.18178/ijfe.5.1.15-21.
U. E. Inyang, "Artificial Neural Network and Their Applications in Food Materials: A Review," Eng. Technol. J., vol. 07, no. 04, 2022, doi: 10.47191/etj/v7i4.06.
Y. chen Wu and J. wen Feng, "Development and Application of Artificial Neural Network," Wirel. Pers. Commun., vol. 102, no. 2, pp. 1645–1656, 2018, doi: 10.1007/s11277-017-5224-x.
M. M. Raju, R. K. Srivastava, D. C. S. Bisht, H. C. Sharma, and A. Kumar, "Development of Artificial Neural-Network-Based Models for the Simulation of Spring Discharge," Adv. Artif. Intell., vol. 2011, pp. 1–11, 2011, doi: 10.1155/2011/686258.
M. Safa et al., "Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes," Phys. A Stat. Mech. its Appl., vol. 550, p. 124046, 2020, doi: 10.1016/j.physa.2019.124046.
F. Stieler, H. Yan, F. Lohr, F. Wenz, and F. F. Yin, "Development of a neuro-fuzzy technique for automated parameter optimization of inverse treatment planning," Radiat. Oncol., vol. 4, p. 39, 2009, doi: 10.1186/1748-717X-4-39.
S. Kar, S. Das, and P. K. Ghosh, "Applications of neuro fuzzy systems: A brief review and future outline," Appl. Soft Comput. J., vol. 15, pp. 243–259, 2014, doi: 10.1016/j.asoc.2013.10.014.
K. gaelle Mohamod, "Council for Innovative Research," J. Adv. Chem., vol. 10, no. 1, pp. 2146–2161, 2014.
E. D. S. Drigo, J. L. M. Rodriguez, M. Embirucu, and S. A. Filho, "Development of a Neuro-Fuzzy System for Assessing Information Management on the Shop Floor," IEEE Access, vol. 8, pp. 207063–207075, 2020, doi: 10.1109/ACCESS.2020.3038061.
C. D. M. van Karnebeek, K. Bowden, and E. Berry-Kravis, "Treatment of Neurogenetic Developmental Conditions: From 2016 into the Future," Pediatr. Neurol., vol. 65, pp. 1–13, 2016, doi: 10.1016/j.pediatrneurol.2016.07.010.
I. Parenti, L. G. Rabaneda, H. Schoen, and G. Novarino, "Neurodevelopmental Disorders: From Genetics to Functional Pathways," Trends Neurosci., vol. 43, no. 8, pp. 608–621, 2020, doi: 10.1016/j.tins.2020.05.004.
P. Jones and R. M. Murray, "The genetics of schizophrenia is the genetics of neurodevelopment," Br. J. Psychiatry, vol. 158, no. MAY, pp. 615–623, 1991, doi: 10.1192/bjp.158.5.615.
K. K. Shukla, "Neuro-genetic prediction of software development effort," Inf. Softw. Technol., vol. 42, no. 10, pp. 701–713, 2000, doi: 10.1016/S0950-5849(00)00114-2.
E. J. G. D. Karthikeyan, C.G. Saravanan, "P Erformance a Nalysis of T Errestrial," Int. J. Adv. Eng., vol. 5, no. 6, pp. 55–64, 2013.
S. Olena and V. Tetyana, "Neuro-genetic hybrid system for management of organizational development measures," CEUR Workshop Proc., vol. 2732, pp. 411–422, 2020.
Z. Zhange, Liwei Wang, R. Liu, and J. Fan, "Development of Cloud Computing Platform Based on Neural Network," Math. Probl. Eng., vol. 2022, 2022, doi: 10.1155/2022/1513081.
D. A. Korzhakin and E. Sugiharti, "Implementation of Genetic Algorithm and Adaptive Neuro Fuzzy Inference System in Predicting Survival of Patients with Heart Failure," Sci. J. Informatics, vol. 8, no. 2, pp. 251–257, 2021, doi: 10.15294/sji.v8i2.32803.
N. Iqbal and P. Kumar, "I-NFG : An integrated neuro-fuzzy-genetic based soft computing techniques for feature selection and disease prediction using gene expression," vol. 4, no. 1, pp. 1–8, 2019.
M. O. Omisore, O. W. Samuel, and E. J. Atajeromavwo, “A Genetic-Neuro-Fuzzy inferential model for diagnosis of tuberculosis,” Appl. Comput. Informatics, vol. 13, no. 1, pp. 27–37, 2017, doi: 10.1016/j.aci.2015.06.001.
M. Sarosa, A. S. Ahmad, B. Riyanto, and A. S. Noer, "Optimization of Neuro-Fuzzy System Using Genetic Algorithm for Chromosome Classification," J. ICT Res. Apl., vol. 1, no. 1, pp. 56–69, 2007.
M. Blaga, "Soft computing applications in knitting technology," Soft Comput. Text. Eng., vol. 19, no. 3, pp. 217–245, 2010, doi: 10.1533/9780857090812.3.217.
V. R. Sharabiani et al., "Application of Artificial Neural Networks, Support Vector, Adaptive Neuro-Fuzzy Inference Systems for the Moisture Ratio of Parboiled Hulls," Appl. Sci., vol. 12, no. 4, pp. 1–18, 2022, doi: 10.3390/app12041771.
N. R. Mavani, J. M. Ali, S. Othman, M. A. Hussain, H. Hashim, and N. A. Rahman, "Application of Artificial Intelligence in Food Industry—a Guideline," Food Eng. Rev., pp. 134–175, 2021, doi: 10.1007/s12393-021-09290-z.
M. Al-Mahasneh, M. Aljarrah, T. Rababah, and M. Alu'datt, "Application of Hybrid Neural Fuzzy System (ANFIS) in Food Processing and Technology," Food Eng. Rev., vol. 8, no. 3, pp. 351–366, 2016, doi: 10.1007/s12393-016-9141-7.
T. Titova, V. Nachev, C. Damyanov, and N. Bozukov, "Neuro-Genetic Algorithm for Non-Destructive Food Quality Determination," no. June, 2013.
A. Yousefi, "Estimation of papaw (Carica papaw L.) moisture content using adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm-artificial neural network (GA-ANN)," Iran. Food Sci. Technol. Res. J., vol. 12, no. 6, pp. 767–779, 2017, doi: 10.22067/ifstrj.v12i6.62521.
J. A. Hernández-Pérez, M. A. García-Alvarado, G. Trystram, and B. Heyd, “Neural networks for the heat and mass transfer prediction during drying of cassava and mango,” Innov. Food Sci. Emerg. Technol., vol. 5, no. 1, pp. 57–64, 2004, doi: 10.1016/j.ifset.2003.10.004.
D. M. Elustondo, A. S. Mujumdar, and M. J. Urbicain, "Optimum operating conditions in drying foodstuffs with superheated steam," Dry. Technol., vol. 20, no. 2, pp. 381–402, 2002, doi: 10.1081/DRT-120002548.
R. Islam, S. S. Sablani, and A. S. Mujumdar, "An artificial neural network model for prediction of drying rates," Dry. Technol., vol. 21, no. 9, pp. 1867–1884, 2003, doi: 10.1081/DRT-120025512.
A. Jahani, "Forest landscape aesthetic quality model (FLAQM): A comparative study on landscape modelling using regression analysis and artificial neural networks," J. For. Sci., vol. 65, no. 2, pp. 61–69, 2019, doi: 10.17221/86/2018-JFS.
J. A. Hernández, B. Heyd, C. Irles, and G. Trystram, “Color ( gray-level ) estimation during coffee roasting,” Proc. Eur. Congr. Chem. Eng., no. September, pp. 16–20, 2007.
J. Qiao, M. O. Ngadi, N. Wang, C. Gariépy, and S. O. Prasher, "Pork quality and marbling level assessment using a hyperspectral imaging system," J. Food Eng., vol. 83, no. 1, pp. 10–16, 2007, doi: 10.1016/j.jfoodeng.2007.02.038.
S. Lertworasirikul and Y. Tipsuwan, "Moisture content and water activity prediction of semi-finished cassava crackers from drying process with artificial neural network," J. Food Eng., vol. 84, no. 1, pp. 65–74, 2008, doi: 10.1016/j.jfoodeng.2007.04.019.
M. Mohebbi, M. R. Akbarzadeh-T, F. Shahidi, and S. M. Zabihi, "Modeling and optimization of mass transfer during osmosis dehydration of carrot slices by neural networks and genetic algorithms," Int. J. Food Eng., vol. 7, no. 2, 2011, doi: 10.2202/1556-3758.1670.
DOI: https://doi.org/10.18196/jrc.v3i4.15232
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Dewi Marfuah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com