Survey Paper Artificial and Computational Intelligence in the Internet of Things and Wireless Sensor Network
Abstract
In this modern age, Internet of Things (IoT) and Wireless Sensor Network (WSN) as its derivatives have become one of the most popular and important technological advancements. In IoT, all things and services in the real world are digitalized and it continues to grow exponentially every year. This growth in number of IoT device in the end has created a tremendous amount of data and new data services such as big data systems. These new technologies can be managed to produce additional value to the existing business model. It also can provide a forecasting service and is capable to produce decision-making support using computational intelligence methods. In this survey paper, we provide detailed research activities concerning Computational Intelligence methods application in IoT WSN. To build a good understanding, in this paper we also present various challenges and issues for Computational Intelligence in IoT WSN. In the last presentation, we discuss the future direction of Computational Intelligence applications in IoT WSN such as Self-Organizing Network (dynamic network) concept.
Keywords
Full Text:
PDFReferences
R. P. Wibisono, N. A. Suwastika, S. Prabowo, and T. D. Santoso, “Automation canal intake control system using fuzzy logic and Internet of Things (IoT),” 2018 6th Int. Conf. Inf. Commun. Technol. ICoICT 2018, 2018, doi: 10.1109/ICoICT.2018.8528756.
T. Sultana, A. Almogren, M. Akbar, M. Zuair, I. Ullah, and N. Javaid, “Data sharing system integrating access control mechanism using blockchain-based smart contracts for IoT devices,” Appl. Sci., 2020, doi: 10.3390/app10020488.
S. B. Saraf and D. H. Gawali, “IoT based smart irrigation monitoring and controlling system,” RTEICT 2017 - 2nd IEEE Int. Conf. Recent Trends Electron. Inf. Commun. Technol. Proc., 2017, doi: 10.1109/RTEICT.2017.8256711.
D. Ardiansyah, A. S. M. Huda, E. T. Tosida, and A. T. Bon, “Wireless sensor networks for soil nutrition to increase agricultural productivity,” Proc. Int. Conf. Ind. Eng. Oper. Manag., 2020.
M. Nitti, V. Pilloni, G. Colistra, and L. Atzori, “The Virtual Object as a Major Element of the Internet of Things: A Survey,” IEEE Commun. Surv. Tutorials, 2016, doi: 10.1109/COMST.2015.2498304.
V. Jacintha, J. Nagarajan, K. T. Yogesh, S. Tamilarasu, and S. Yuvaraj, “An IOT Based ATM Surveillance System,” 2017 IEEE Int. Conf. Comput. Intell. Comput. Res. ICCIC 2017, 2018, doi: 10.1109/ICCIC.2017.8524485.
Y. Wang, Y. Cui, F. Chen, and R. Ren, “An ‘illumination moving with the vehicle’ intelligent control system of road tunnel lighting,” Sustain., 2020, doi: 10.3390/SU12187314.
Y. Dong and Y. D. Yao, “Secure mmWave-Radar-Based Speaker Verification for IoT Smart Home,” IEEE Internet Things J., 2021, doi: 10.1109/JIOT.2020.3023101.
R. O. Andrade, S. G. Yoo, L. Tello-Oquendo, and I. Ortiz-Garces, “A Comprehensive Study of the IoT Cybersecurity in Smart Cities,” IEEE Access, 2020, doi: 10.1109/ACCESS.2020.3046442.
M. S. Farooq, S. Riaz, A. Abid, K. Abid, and M. A. Naeem, “A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming,” IEEE Access. 2019, doi: 10.1109/ACCESS.2019.2949703.
Y. Song, F. R. Yu, L. Zhou, X. Yang, and Z. He, “Applications of the Internet of Things (IoT) in Smart Logistics: A Comprehensive Survey,” IEEE Internet of Things Journal. 2021, doi: 10.1109/JIOT.2020.3034385.
J. Huang, L. Xu, C. C. Xing, and Q. Duan, “A Novel Bioinspired Multiobjective Optimization Algorithm for Designing Wireless Sensor Networks in the Internet of Things,” Journal of Sensors. 2015, doi: 10.1155/2015/192194.
F. Qi, W. Li, P. Yu, L. Feng, and F. Zhou, “Deep learning-based BackCom multiple beamforming for 6G UAV IoT networks,” Eurasip J. Wirel. Commun. Netw., 2021, doi: 10.1186/s13638-021-01932-4.
R. Priambodo and T. M. Kadarina, “Monitoring Self-isolation Patient of COVID-19 with Internet of Things,” 2020 IEEE Int. Conf. Commun. Networks Satell. Comnetsat 2020 - Proc., 2020, doi: 10.1109/Comnetsat50391.2020.9328953.
A. Tehseen, N. A. Zafar, T. Ali, F. Jameel, and E. H. Alkhammash, “Formal modeling of iot and drone‐based forest fire detection and counteraction system,” Electron., 2022, doi: 10.3390/electronics11010128.
I. Novkovic et al., “Gis-based forest fire susceptibility zonation with iot sensor network support, case study—nature park Golija, Serbia,” Sensors, 2021, doi: 10.3390/s21196520.
ITU-T, “Recommendation ITU-T Y.2221: Requirements for Support of Ubiquitous Sensor Network (USN) Applications and Services in the NGN Environment.” p. 32, 2010.
N. Sharmin, A. Karmaker, W. L. Lambert, M. S. Alam, and M. S. T. S. A. Shawkat, “Minimizing the energy hole problem in wireless sensor networks: A wedge merging approach,” Sensors (Switzerland), 2020, doi: 10.3390/s20010277.
J. Chen, S. Li, S. H. G. Chan, and J. He, “WIANI: Wireless infrastructure and Ad-hoc network integration,” IEEE Int. Conf. Commun., 2005, doi: 10.1109/icc.2005.1495092.
S. Aluvala, K. Raja Sekhar, and D. Vodnala, “A novel technique for node authentication in mobile ad hoc networks,” Perspect. Sci., 2016, doi: 10.1016/j.pisc.2016.06.057.
M. F. Othman and K. Shazali, “Wireless sensor network applications: A study in environment monitoring system,” Procedia Eng., vol. 41, pp. 1204–1210, 2012, doi: 10.1016/j.proeng.2012.07.302.
J.-S. R. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence. Prentice Hall, 1997.
M. Chetto and A. Queudet, Harnessing Ambient Energy for Embedded Systems. Elsevier Ltd, 2016.
ITU-T, “Applications of Wireless Sensor Networks in Next Generation Networks,” Series T.2000: Next Generation Networks, no. February. pp. 1–94, 2014.
Y. Wang and Z. Chi, “System of wireless temperature and humidity monitoring based on Arduino Uno platform,” Proc. - 2016 6th Int. Conf. Instrum. Meas. Comput. Commun. Control. IMCCC 2016, 2016, doi: 10.1109/IMCCC.2016.89.
V. Singhvi, A. Krause, C. Guestrin, J. H. Garrett, and H. Scott Matthews, “Intelligent light control using sensor networks,” SenSys 2005 - Proc. 3rd Int. Conf. Embed. Networked Sens. Syst., 2005, doi: 10.1145/1098918.1098942.
I. Mat, M. R. M. Kassim, and A. N. Harun, “Precision agriculture applications using wireless moisture sensor network,” 2015 IEEE 12th Malaysia Int. Conf. Commun. MICC 2015, 2016, doi: 10.1109/MICC.2015.7725400.
Y. Li, Z. Wang, and Y. Song, “Wireless sensor network design for wildfire monitoring,” Proc. World Congr. Intell. Control Autom., 2006, doi: 10.1109/WCICA.2006.1712372.
T. Dinh Le and D. H. Tan, “Design and deploy a wireless sensor network for precision agriculture,” Proc. 2015 2nd Natl. Found. Sci. Technol. Dev. Conf. Inf. Comput. Sci. NICS 2015, 2015, doi: 10.1109/NICS.2015.7302210.
R. A. Siddiqui, R. I. Grosvenor, and P. W. Prickett, “DsPIC-based advanced data acquisition system for Monitoring, Control and Security Applications,” Proc. 2015 12th Int. Bhurban Conf. Appl. Sci. Technol. IBCAST 2015, 2015, doi: 10.1109/IBCAST.2015.7058519.
M. Ben-Ezra, A. Zomet, and S. K. Nayar, “Video super-resolution using controlled subpixel detector shifts,” IEEE Trans. Pattern Anal. Mach. Intell., 2005, doi: 10.1109/TPAMI.2005.129.
S. R. Das, S. Chita, N. Peterson, B. A. Shirazi, and M. Bhadkamkar, “Home automation and security for mobile devices,” in 2011 IEEE International Conference on Pervasive Computing and Communications Workshops, PERCOM Workshops 2011, 2011, doi: 10.1109/PERCOMW.2011.5766856.
X. Xiang, M. Zhai, N. Lv, and A. El Saddik, “Vehicle counting based on vehicle detection and tracking from aerial videos,” Sensors (Switzerland), 2018, doi: 10.3390/s18082560.
Atmel, “ATmega328P,” AVR Microcontrollers. 2016.
A. Das and T. Yaswanth, “A low-cost, portable alternative for a digital Lock-In Amplifier using TMS320C5535 DSP,” 12th IEEE Int. Conf. Electron. Energy, Environ. Commun. Comput. Control (E3-C3), INDICON 2015, 2016, doi: 10.1109/INDICON.2015.7443743.
M. I. Soliman and G. Y. Abozaid, “FPGA implementation and performance evaluation of a high throughput crypto coprocessor,” J. Parallel Distrib. Comput., 2011, doi: 10.1016/j.jpdc.2011.04.006.
M. Rivai, D. Hutabarat, and Z. M. Jauhar Nafis, “2D mapping using omni-directional mobile robot equipped with LiDAR,” Telkomnika (Telecommunication Comput. Electron. Control., 2020, doi: 10.12928/TELKOMNIKA.v18i3.14872.
A. Alexan, A. Alexan, and O. Stefan, “SoC based IoT sensor network hub for activity recognition using ML.net framework,” in 2020 IEEE 26th International Symposium for Design and Technology in Electronic Packaging, SIITME 2020 - Conference Proceedings, 2020, doi: 10.1109/SIITME50350.2020.9292278.
R. C. Lunardi, R. A. Michelin, C. V. Neu, and A. F. Zorzo, “Distributed access control on IoT ledger-based architecture,” in IEEE/IFIP Network Operations and Management Symposium: Cognitive Management in a Cyber World, NOMS 2018, 2018, doi: 10.1109/NOMS.2018.8406154.
M. Mehta, “ESP8266 : A Breakthrough in Wireless Sensor Networks and Internet of Things,” Int. J. Electron. Commun. Eng. Technol., 2015.
Espressif Systems, “ESP8266EX.” Espressif Systems, 2020.
Espressif, “ESP32 Series Datasheet,” Espr. Syst., 2019.
A. M. Baharudin and W. Yan, “Long-range wireless sensor networks for geo-location tracking: Design and evaluation,” Proc. - 2016 Int. Electron. Symp. IES 2016, 2017, doi: 10.1109/ELECSYM.2016.7860979.
C. B. Mwakwata, H. Malik, M. M. Alam, Y. Le Moullec, S. Parand, and S. Mumtaz, “Narrowband internet of things (NB-IoT): From physical (PHY) and media access control (MAC) layers perspectives,” Sensors (Switzerland), 2019, doi: 10.3390/s19112613.
A. Lavric, A. I. Petrariu, and V. Popa, “Long Range SigFox Communication Protocol Scalability Analysis under Large-Scale, High-Density Conditions,” IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2903157.
M. T. Penella, J. Albesa, and M. Gasulla, “Powering wireless sensor nodes: Primary batteries versus energy harvesting,” 2009 IEEE Intrumentation Meas. Technol. Conf. I2MTC 2009, 2009, doi: 10.1109/IMTC.2009.5168715.
F. Engmann, F. A. Katsriku, J. D. Abdulai, K. S. Adu-Manu, and F. K. Banaseka, “Prolonging the Lifetime of Wireless Sensor Networks: A Review of Current Techniques,” Wireless Communications and Mobile Computing. 2018, doi: 10.1155/2018/8035065.
F. I. Simjee and P. H. Chou, “Efficient charging of supercapacitors for extended lifetime of wireless sensor nodes,” IEEE Trans. Power Electron., 2008, doi: 10.1109/TPEL.2008.921078.
S. N. R. Kantareddy et al., “Perovskite PV-Powered RFID: Enabling Low-Cost Self-Powered IoT Sensors,” IEEE Sens. J., 2020, doi: 10.1109/JSEN.2019.2939293.
E. O. De La Rosa et al., “Plant microbial fuel cells-based energy harvester system for self-powered IoT applications,” Sensors (Switzerland), 2019, doi: 10.3390/s19061378.
S. Patra, “Notice of Removal: Design and Development of Magnetostrictive Low Power DC Generator and Vibration Sensor,” IEEE Sensors Journal. 2020, doi: 10.1109/JSEN.2020.2976541.
S. Patra et al., “Self- operating Flyback Converter for Boosting Ultralow Voltage of Thermoelectric Power Generator for IoT Applications,” IEEE Trans. Ind. Electron., 2021, doi: 10.1109/TIE.2021.3135613.
M. Cai and W. H. Liao, “High-Power Density Inertial Energy Harvester without Additional Proof Mass for Wearables,” IEEE Internet Things J., 2021, doi: 10.1109/JIOT.2020.3003262.
A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Commun. Surv. Tutorials, 2015, doi: 10.1109/COMST.2015.2444095.
Z. Yang, Y. Yue, Y. Yang, Y. Peng, X. Wang, and W. Liu, “Study and application on the architecture and key technologies for IOT,” 2011 Int. Conf. Multimed. Technol. ICMT 2011, 2011, doi: 10.1109/ICMT.2011.6002149.
R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: The internet of things architecture, possible applications and key challenges,” Proc. - 10th Int. Conf. Front. Inf. Technol. FIT 2012, 2012, doi: 10.1109/FIT.2012.53.
H. Zou, Y. Zhou, J. Yang, and C. J. Spanos, “Unsupervised WiFi-Enabled IoT Device-User Association for Personalized Location-Based Service,” IEEE Internet Things J., 2019, doi: 10.1109/JIOT.2018.2868648.
P. Narczyk and W. A. Pleskacz, “Analog Frontend for Reliable Human Body Temperature Measurement for IoT Devices,” Electron., 2022, doi: 10.3390/electronics11030434.
A. Pandey, R. Vamsi, and S. Kumar, “Handling Device Heterogeneity and Orientation Using Multistage Regression for GMM Based Localization in IoT Networks,” IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2945539.
Y. Koyasako, T. Suzuki, T. Yamada, T. Shimada, and T. Yoshida, “Demonstration of Real-Time Motion Control Method for Access Edge Computing in PONs,” IEEE Access, 2022, doi: 10.1109/ACCESS.2021.3136876.
Q. Meng and S. Zhu, “Developing iot sensing system for construction-induced vibration monitoring and impact assessment,” Sensors (Switzerland), 2020, doi: 10.3390/s20216120.
D. Moreno, X. Fan, F. Niklaus, and L. Guillermo Villanueva, “Proof of Concept of a Graphene-Based Resonant Accelerometer,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2021, doi: 10.1109/MEMS51782.2021.9375187.
F. Hashim, R. Mohamad, M. Kassim, S. I. Suliman, N. M. Anas, and A. Z. A. Bakar, “Implementation of embedded real-time monitoring temperature and humidity system,” Indones. J. Electr. Eng. Comput. Sci., 2019, doi: 10.11591/ijeecs.v16.i1.pp184-190.
C. A. R. Díaz et al., “Iotof: A long-reach fully passive low-rate upstream phy for iot over fiber,” Electron., 2019, doi: 10.3390/electronics8030359.
B. Seok, J. C. S. Sicato, T. Erzhena, C. Xuan, Y. Pan, and J. H. Park, “Secure D2D communication for 5G IoT network based on lightweight cryptography,” Appl. Sci., 2020, doi: 10.3390/app10010217.
S. R. Pokhrel, H. L. Vu, and A. L. Cricenti, “Adaptive Admission Control for IoT Applications in Home WiFi Networks,” IEEE Trans. Mob. Comput., 2020, doi: 10.1109/TMC.2019.2935719.
S. R. Hussain, S. Mehnaz, S. Nirjon, and E. Bertino, “Secure Seamless Bluetooth Low Energy Connection Migration for Unmodified IoT Devices,” IEEE Trans. Mob. Comput., 2018, doi: 10.1109/TMC.2017.2739742.
L. Leonardi, F. Battaglia, and L. Lo Bello, “RT-LoRa: A Medium Access Strategy to Support Real-Time Flows Over LoRa-Based Networks for Industrial IoT Applications,” IEEE Internet Things J., 2019, doi: 10.1109/JIOT.2019.2942776.
B. Vejlgaard, M. Lauridsen, H. Nguyen, I. Z. Kovacs, P. Mogensen, and M. Sorensen, “Coverage and Capacity Analysis of Sigfox, LoRa, GPRS, and NB-IoT,” in IEEE Vehicular Technology Conference, 2017, doi: 10.1109/VTCSpring.2017.8108666.
H. A. H. Alobaidy, J. S. Mandeep, R. Nordin, N. F. Abdullah, C. G. Wei, and M. L. S. Soon, “Real-World Evaluation of Power Consumption and Performance of NB-IoT in Malaysia,” IEEE Internet Things J., 2021, doi: 10.1109/JIOT.2021.3131160.
A. Shahraki, A. Taherkordi, O. Haugen, and F. Eliassen, “A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms,” IEEE Trans. Netw. Serv. Manag., 2021, doi: 10.1109/TNSM.2020.3035315.
C. Xie, B. Yu, Z. Zeng, Y. Yang, and Q. Liu, “Multilayer Internet-of-Things Middleware Based on Knowledge Graph,” IEEE Internet Things J., 2021, doi: 10.1109/JIOT.2020.3019707.
L. Liu, J. Xu, Y. Huan, Z. Zou, S. C. Yeh, and L. R. Zheng, “A Smart Dental Health-IoT Platform Based on Intelligent Hardware, Deep Learning, and Mobile Terminal,” IEEE J. Biomed. Heal. Informatics, 2020, doi: 10.1109/JBHI.2019.2919916.
E. Navarro, N. Costa, and A. Pereira, “A systematic review of iot solutions for smart farming,” Sensors (Switzerland). 2020, doi: 10.3390/s20154231.
T. Y. Kim, S. H. Bae, and Y. E. An, “Design of Smart Home Implementation within IoT Natural Language Interface,” IEEE Access, 2020, doi: 10.1109/ACCESS.2020.2992512.
Y. C. Hsiao, M. H. Wu, and S. C. Li, “Elevated performance of the smart city-a case study of the iot by innovation mode,” IEEE Trans. Eng. Manag., 2021, doi: 10.1109/TEM.2019.2908962.
Y. M. Tashtoush et al., “Agile Approaches for Cybersecurity Systems, IoT and Intelligent Transportation,” IEEE Access, 2022, doi: 10.1109/ACCESS.2021.3136861.
G. Suciu, I. Hussain, A. Badicu, L. Necula, and T. Ușurelu, “IoT services applied at the smart cities level,” in Advances in Intelligent Systems and Computing, 2020, doi: 10.1007/978-3-030-45691-7_42.
C. T. Chiang, Y. K. Lu, and L. T. Lin, “A CMOS fish spoilage detector for IoT applications of fish markets,” IEEE Sens. J., 2018, doi: 10.1109/JSEN.2017.2770222.
S. L. Ullo and G. R. Sinha, “Advances in IoT and Smart Sensors for Remote Sensing and Agriculture Applications,” Remote Sens., 2021, doi: 10.3390/rs13132585.
Z. Wu, K. Qiu, and J. Zhang, “A smart microcontroller architecture for the internet of things,” Sensors (Switzerland), 2020, doi: 10.3390/s20071821.
D. Fernández-Cerero, J. Y. Fernández-Rodríguez, J. A. Álvarez-García, L. M. Soria-Morillo, and A. Fernández-Montes, “Single-board-computer clusters for cloudlet computing in internet of things,” Sensors (Switzerland), 2019, doi: 10.3390/s19133026.
F. Pereira, S. I. Lopes, N. B. Carvalho, and A. Curado, “RNProbe: A lora-enabled IoT edge device for integrated radon risk management,” IEEE Access, 2020, doi: 10.1109/ACCESS.2020.3036980.
J. Yang, H. Zou, H. Jiang, and L. Xie, “Device-Free Occupant Activity Sensing Using WiFi-Enabled IoT Devices for Smart Homes,” IEEE Internet Things J., 2018, doi: 10.1109/JIOT.2018.2849655.
K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “Overview of Cellular LPWAN Technologies for IoT Deployment: Sigfox, LoRaWAN, and NB-IoT,” in 2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018, 2018, doi: 10.1109/PERCOMW.2018.8480255.
S. Popli, R. K. Jha, and S. Jain, “A Survey on Energy Efficient Narrowband Internet of Things (NBIoT): Architecture, Application and Challenges,” IEEE Access. 2019, doi: 10.1109/ACCESS.2018.2881533.
P. K. R. Maddikunta, G. Srivastava, T. R. Gadekallu, N. Deepa, and P. Boopathy, “Predictive model for battery life in IoT networks,” IET Intell. Transp. Syst., 2020, doi: 10.1049/iet-its.2020.0009.
M. G. Vidrascu and P. M. Svasta, “Maintenance-free IOT gateway design for bee hive monitoring,” in 2017 IEEE 23rd International Symposium for Design and Technology in Electronic Packaging, SIITME 2017 - Proceedings, 2017, doi: 10.1109/SIITME.2017.8259886.
M. DInh, N. Ha-Van, N. T. Tung, and M. Thuy Le, “Dual-Polarized Wide-Angle Energy Harvester for Self-Powered IoT Devices,” IEEE Access, 2021, doi: 10.1109/ACCESS.2021.3098983.
A. H. Sodhro and N. Zahid, “Ai‐enabled framework for fog computing driven E‐healthcare applications,” Sensors, 2021, doi: 10.3390/s21238039.
L. A. Zadeh, “The Concept of a Linguistic Variable and its Application to Approximate Reasoning,” Inf. Sci. (Ny)., vol. 8, no. 3, pp. 199–249, 1975.
N. Yusof, N. Bahiah, M. Shahizan, and Y. Chun, “A Concise Fuzzy Rule Base to Reason Student Performance Based on Rough-Fuzzy Approach,” in Fuzzy Inference System - Theory and Applications, 2012.
Iswanto and I. Ahmad, “Second-order integral fuzzy logic control based rocket tracking control,” J. Robot. Control, vol. 2, no. 6, pp. 594–604, 2021, doi: 10.18196/jrc.26142.
A. Adriansyah, Y. Gunardi, B. Badaruddin, and E. Ihsanto, “Goal-seeking Behavior-based Mobile Robot Using Particle Swarm Fuzzy Controller,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 13, no. 2, 2015, doi: 10.12928/telkomnika.v13i2.1111.
R. Kristiyono and W. Wiyono, “Autotuning Fuzzy PID Controller for Speed Control of BLDC Motor,” J. Robot. Control, vol. 2, no. 5, pp. 400–407, 2021, doi: 10.18196/jrc.25114.
B. AlKhlidi, A. T. Abdulsadda, and A. Al Bakri, “Optimal Robotic Path Planning Using Intlligents Search Algorithms,” J. Robot. Control, vol. 2, no. 6, pp. 519–526, 2021, doi: 10.18196/26132.
Z. Lin, C. Cui, and G. Wu, “Dynamic modeling and torque feedforward based optimal fuzzy pd control of a high-speed parallel manipulator,” J. Robot. Control, vol. 2, no. 6, pp. 527–538, 2021, doi: 10.18196/jrc.26133.
S. Sahloul, D. Ben Halima Abid, and C. Rekik, “An hybridization of global-local methods for autonomous mobile robot navigation in partially-known environments,” J. Robot. Control, vol. 2, no. 4, pp. 221–233, 2021, doi: 10.18196/jrc.2483.
T. Tagaki and M. Sugeno, “Fuzzy Identification of System and its Application to Modeling and Control,” IEEE Trans. Syst. Man Cybern., vol. 15, no. 1, pp. 116–132, 1985.
C. H. Chiu and Y. F. Peng, “Design of Takagi-Sugeno fuzzy control scheme for real world system control,” Sustain., 2019, doi: 10.3390/su11143855.
X. Tang, D. Ning, H. Du, W. Li, Y. Gao, and W. Wen, “A takagi-sugeno fuzzy model-based control strategy for variable stiffness and variable damping suspension,” IEEE Access, 2020, doi: 10.1109/ACCESS.2020.2983998.
X. Tang, D. Ning, H. Du, W. Li, and W. Wen, “Takagi-Sugeno Fuzzy Model-Based Semi-Active Control for the Seat Suspension with an Electrorheological Damper,” IEEE Access, 2020, doi: 10.1109/ACCESS.2020.2995214.
The MathWorks Inc., “Mamdani and Sugeno Fuzzy Inference Systems,” Matlab R2020a, https://au.mathworks.com/help/fuzzy/types-of-fuzzy-inference-systems.html, 2020. .
J. S. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System,” IEEE Trans. Syst. Man Cybern., vol. 23, no. 3, pp. 665–685, 1993, doi: 10.1109/21.256541.
G. P. N. Hakim et al., “Near Ground Pathloss Propagation Model Using Adaptive Neuro Fuzzy Inference System for Wireless Sensor Network Communication in Forest, Jungle, and Open Dirt Road Environments,” Sensors, vol. 2022, p. 3267, 2022, doi: 10.3390/s22093267.
C. Ben Jabeur and H. Seddik, “Optimized Neural Networks-PID Controller with Wind Rejection Strategy for a Quad-Rotor,” J. Robot. Control, vol. 3, no. 1, pp. 62–72, 2022, doi: 10.18196/jrc.v3i1.11660.
W. Rahmaniar and A. Hernawan, “Real-Time Human Detection Using Deep Learning on Embedded Platforms: A Review,” J. Robot. Control, vol. 2, no. 6, pp. 462–468, 2021, doi: 10.18196/jrc.26123.
D. O. Oyewola, A. F. Augustine, E. G. Dada, and A. Ibrahim, “Predicting impact of COVID-19 on crude oil price image with directed acyclic graph deep convolutional neural network,” J. Robot. Control, vol. 2, no. 2, pp. 103–109, 2021, doi: 10.18196/jrc.2261.
Z. Dzulfikri, S. T. Nuryanti, and Y. Erdani, “Design and implementation of artificial neural networks to predict wind directions on controlling yaw of wind turbine prototype,” J. Robot. Control, vol. 1, no. 1, pp. 20–26, 2020, doi: 10.18196/jrc.1105.
S. Sinha, U. Srivastava, V. Dhiman, P. S. Akhilan, and S. Mishra, “Performance assessment of deep learning procedures: Sequential and ResNet on malaria dataset,” J. Robot. Control, vol. 2, no. 1, pp. 12–18, 2021, doi: 10.18196/jrc.2145.
P. T. T. Ngo et al., “A novel hybrid swarm optimized multilayer neural network for spatial prediction of flash floods in tropical areas using sentinel-1 SAR imagery and geospatial data,” Sensors (Switzerland), 2018, doi: 10.3390/s18113704.
J. Gu et al., “Recent advances in convolutional neural networks,” Pattern Recognit., 2018, doi: 10.1016/j.patcog.2017.10.013.
Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A Comprehensive Survey on Graph Neural Networks,” IEEE Trans. Neural Networks Learn. Syst., 2021, doi: 10.1109/TNNLS.2020.2978386.
T. Geng et al., “O3BNN-R: An Out-of-Order Architecture for High-Performance and Regularized BNN Inference,” IEEE Trans. Parallel Distrib. Syst., 2021, doi: 10.1109/TPDS.2020.3013637.
Z. E. Mohamed, “Using the artificial neural networks for prediction and validating solar radiation,” J. Egypt. Math. Soc., 2019, doi: 10.1186/s42787-019-0043-8.
S. Mammadli, “Financial time series prediction using artificial neural network based on Levenberg-Marquardt algorithm,” Procedia Comput. Sci., 2017, doi: 10.1016/j.procs.2017.11.285.
M. T. Hagan and M. B. Menhaj, “Training Feedforward Networks with the Marquardt Algorithm,” IEEE Trans. Neural Networks, 1994, doi: 10.1109/72.329697.
S. Roweis, “Levenberg-Marquardt Optimization,” Notes, Univ. Toronto, 1996.
S. A. Bkheet and J. I. Agbinya, “A Review of Identity Methods of Internet of Things (IOT),” Adv. Internet Things, 2021, doi: 10.4236/ait.2021.114011.
J. Yu et al., “Stabilizing Frame Slotted Aloha-Based IoT Systems: A Geometric Ergodicity Perspective,” IEEE Journal on Selected Areas in Communications. 2021, doi: 10.1109/JSAC.2020.3018795.
J. Grosinger, W. Pachler, and W. Bosch, “Tag Size Matters: Miniaturized RFID Tags to Connect Smart Objects to the Internet,” IEEE Microw. Mag., 2018, doi: 10.1109/MMM.2018.2844029.
I. Farris, A. Lera, A. Molinaro, and S. Pizzi, “A CoAP-compliant solution for efficient inclusion of RFID in the Internet of Things,” in 2014 IEEE Global Communications Conference, GLOBECOM 2014, 2014, doi: 10.1109/GLOCOM.2014.7037231.
M. C. Chung, G. M. Lee, N. Crespi, and C. C. Tseng, “RFID object tracking with IP compatibility for the Internet of Things,” in Proceedings - 2012 IEEE Int. Conf. on Green Computing and Communications, GreenCom 2012, Conf. on Internet of Things, iThings 2012 and Conf. on Cyber, Physical and Social Computing, CPSCom 2012, 2012, doi: 10.1109/GreenCom.2012.30.
H. Ning, X. Liu, X. Ye, J. He, W. Zhang, and M. Daneshmand, “Edge Computing-Based ID and nID Combined Identification and Resolution Scheme in IoT,” IEEE Internet Things J., 2019, doi: 10.1109/JIOT.2019.2911564.
N. Koshizuka and K. Sakamura, “Ubiquitous ID: Standards for ubiquitous computing and the internet of things,” IEEE Pervasive Comput., 2010, doi: 10.1109/MPRV.2010.87.
C. Ruiz, S. Pan, A. Bannis, M. P. Chang, H. Y. Noh, and P. Zhang, “IDIoT: Towards ubiquitous identification of iot devices through visual and inertial orientation matching during human activity,” in Proceedings - 5th ACM/IEEE Conference on Internet of Things Design and Implementation, IoTDI 2020, 2020, doi: 10.1109/IoTDI49375.2020.00012.
R. Perdisci, T. Papastergiou, O. Alrawi, and M. Antonakakis, “IoTFinder: Efficient Large-Scale Identification of IoT Devices via Passive DNS Traffic Analysis,” in Proceedings - 5th IEEE European Symposium on Security and Privacy, Euro S and P 2020, 2020, doi: 10.1109/EuroSP48549.2020.00037.
O. Kleine, “CoAP endpoint identification - A protocol extension for crowd sensing in the mobile internet,” in Proceedings - 2014 IEEE International Conference on Internet of Things, iThings 2014, 2014 IEEE International Conference on Green Computing and Communications, GreenCom 2014 and 2014 IEEE International Conference on Cyber-Physical-Social Computing, CPS 20, 2014, doi: 10.1109/iThings.2014.65.
A. J. Jara, P. Moreno-Sanchez, A. F. Skarmeta, S. Varakliotis, and P. Kirstein, “IPv6 addressing proxy: Mapping native addressing from legacy technologies and devices to the internet of things (IPv6),” Sensors (Switzerland), 2013, doi: 10.3390/s130506687.
J.-H. Lee, “IPv6 Address Configuration for Privacy Protection in the IoT,” J. Secur. Eng., 2015, doi: 10.14257/jse.2015.06.02.
J. D. Kim, M. Ko, and J. M. Chung, “Physical Identification Based Trust Path Routing Against Sybil Attacks on RPL in IoT Networks,” IEEE Wirel. Commun. Lett., 2022, doi: 10.1109/LWC.2022.3157831.
F. Samad, A. Abbasi, Z. A. Memon, A. Aziz, and A. Rahman, “The Future of Internet: IPv6 Fulfilling the Routing Needs in Internet of Things,” Int. J. Futur. Gener. Commun. Netw., 2018, doi: 10.14257/ijfgcn.2018.11.1.02.
Z. Niu, Q. Li, C. Ma, H. Li, H. Shan, and F. Yang, “Identification of critical nodes for enhanced network defense in MANET-IoT networks,” IEEE Access, 2020, doi: 10.1109/ACCESS.2020.3029736.
S. Shukla, S. Thakur, S. Hussain, J. G. Breslin, and S. M. Jameel, “Identification and Authentication in Healthcare Internet-of-Things Using Integrated Fog Computing Based Blockchain Model,” Internet of Things (Netherlands), 2021, doi: 10.1016/j.iot.2021.100422.
S. Joshi et al., “Unified Authentication and Access Control for Future Mobile Communication-Based Lightweight IoT Systems Using Blockchain,” Wirel. Commun. Mob. Comput., 2021, doi: 10.1155/2021/8621230.
J. M. McGinthy, L. J. Wong, and A. J. Michaels, “Groundwork for Neural Network-Based Specific Emitter Identification Authentication for IoT,” IEEE Internet Things J., 2019, doi: 10.1109/JIOT.2019.2908759.
A. Mukherjee, S. Misra, N. S. Raghuwanshi, and S. Mitra, “Blind entity identification for agricultural IoT deployments,” IEEE Internet Things J., 2019, doi: 10.1109/JIOT.2018.2879454.
D. Ganesh Kumar, N. Insozhan, and V. Parthasarathy, “Recognition of faulty node detection using fuzzy logic in iot,” Int. J. Sci. Technol. Res., 2019.
A. K. Gautam and R. Kumar, “A Trust Based Neighbor Identification Using MCDM Model in Wireless Sensor Networks,” Recent Adv. Comput. Sci. Commun., 2019, doi: 10.2174/2666255813666190923101045.
Y. J. Jeong, K. E. An, S. W. Lee, and D. Seo, “Improved durability of soil humidity sensor for agricultural IoT environments,” in 2018 IEEE International Conference on Consumer Electronics, ICCE 2018, 2018, doi: 10.1109/ICCE.2018.8326223.
S. Zeb, A. Habib, Y. Amin, H. Tenhunen, and J. Loo, “Green electronic based chipless humidity sensor for IoT applications,” in IEEE Green Technologies Conference, 2018, doi: 10.1109/GreenTech.2018.00039.
J. Ramírez-Faz, L. M. Fernández-Ahumada, E. Fernández-Ahumada, and R. López-Luque, “Monitoring of temperature in retail refrigerated cabinets applying iot over open-source hardware and software,” Sensors (Switzerland), 2020, doi: 10.3390/s20030846.
M. Bhattacharjee, F. Nikbakhtnasrabadi, and R. Dahiya, “Printed Chipless Antenna as Flexible Temperature Sensor,” IEEE Internet Things J., 2021, doi: 10.1109/JIOT.2021.3051467.
G. Liu et al., “A flexible temperature sensor based on reduced graphene oxide for robot skin used in internet of things,” Sensors (Switzerland), 2018, doi: 10.3390/s18051400.
K. Keshamoni and S. Hemanth, “Smart gas level monitoring, booking & gas leakage detector over iot,” in Proceedings - 7th IEEE International Advanced Computing Conference, IACC 2017, 2017, doi: 10.1109/IACC.2017.0078.
R. Firdaus, M. A. Murti, and I. Alinursafa, “Air quality monitoring system based internet of things (IoT) using LPWAN LoRa,” in Proceedings - 2019 IEEE International Conference on Internet of Things and Intelligence System, IoTaIS 2019, 2019, doi: 10.1109/IoTaIS47347.2019.8980437.
H. P. L. De Medeiros and G. Girao, “An IoT-based Air Quality Monitoring Platform,” in 2020 IEEE International Smart Cities Conference, ISC2 2020, 2020, doi: 10.1109/ISC251055.2020.9239070.
C. Maraveas and T. Bartzanas, “Sensors for structural health monitoring of agricultural structures,” Sensors (Switzerland). 2021, doi: 10.3390/s21010314.
W. K. Phua et al., “Ain-based mems (Micro-electro-mechanical system) hydrophone sensors for iot water leakage detection system,” Water (Switzerland), 2020, doi: 10.3390/w12112966.
F. Jan, N. Min-Allah, and D. Düştegör, “Iot based smart water quality monitoring: Recent techniques, trends and challenges for domestic applications,” Water (Switzerland). 2021, doi: 10.3390/w13131729.
R. La Rosa, C. Dehollain, A. Burg, M. Costanza, and P. Livreri, “An energy-autonomous wireless sensor with simultaneous energy harvesting and ambient light sensing,” IEEE Sens. J., 2021, doi: 10.1109/JSEN.2021.3068134.
W. N. W. Muhamad, S. A. Bin Razali, N. A. Wahab, M. M. Azreen, S. S. Sarnin, and N. F. Naim, “Smart Bike Monitoring System for Cyclist via Internet of Things (IoT),” in 2020 IEEE 5th International Symposium on Telecommunication Technologies, ISTT 2020 - Proceedings, 2020, doi: 10.1109/ISTT50966.2020.9279377.
T. Lee and M. Tso, “A universal sensor data platform modelled for realtime asset condition surveillance and big data analytics for railway systems: Developing a ‘Smart Railway’ mastermind for the betterment of reliability, availability, maintainbility and safety of railway s,” in Proceedings of IEEE Sensors, 2017, doi: 10.1109/ICSENS.2016.7808734.
N. Patil and B. Iyer, “Health monitoring and tracking system for soldiers using Internet of Things(IoT),” in Proceeding - IEEE International Conference on Computing, Communication and Automation, ICCCA 2017, 2017, doi: 10.1109/CCAA.2017.8230007.
S. M. C. Porto, F. Valenti, G. Castagnolo, and G. Cascone, “A Low Power GPS-based device to develop KDE analyses for managing herd in extensive livestock systems,” in 2021 IEEE International Workshop on Metrology for Agriculture and Forestry, MetroAgriFor 2021 - Proceedings, 2021, doi: 10.1109/MetroAgriFor52389.2021.9628711.
S. S. N. Perala, I. Galanis, and I. Anagnostopoulos, “Fog Computing and Efficient Resource Management in the era of Internet-of-Video Things (IoVT),” in Proceedings - IEEE International Symposium on Circuits and Systems, 2018, doi: 10.1109/ISCAS.2018.8351341.
S. Ravikumar and D. Kavitha, “IoT based home monitoring system with secure data storage by Keccak–Chaotic sequence in cloud server,” J. Ambient Intell. Humaniz. Comput., 2021, doi: 10.1007/s12652-020-02424-x.
P. Meda, M. Kumar, and R. Parupalli, “Mobile augmented reality application for Telugu language learning,” in Proceedings of the 2014 IEEE International Conference on MOOCs, Innovation and Technology in Education, IEEE MITE 2014, 2015, doi: 10.1109/MITE.2014.7020267.
A. Tagami and Z. Shen, “LESAR: Localization System for Environmental Sensors using Augmented Reality,” in Proceedings - 2020 IEEE 44th Annual Computers, Software, and Applications Conference, COMPSAC 2020, 2020, doi: 10.1109/COMPSAC48688.2020.00-16.
T. Okawara, M. Yoshida, H. Nagahara, and Y. Yagi, “Action recognition from a single coded image,” in IEEE International Conference on Computational Photography, ICCP 2020, 2020, doi: 10.1109/ICCP48838.2020.9105176.
Shin, W. Paik, B. Kim, and S. Hwang, “An IoT platform with monitoring robot applying CNN-based context-aware learning,” Sensors (Switzerland), 2019, doi: 10.3390/s19112525.
M. Zhong, Y. Zhou, and G. Chen, “Sequential model based intrusion detection system for iot servers using deep learning methods,” Sensors (Switzerland), 2021, doi: 10.3390/s21041113.
A. Ullah, K. Muhammad, W. Ding, V. Palade, I. U. Haq, and S. W. Baik, “Efficient activity recognition using lightweight CNN and DS-GRU network for surveillance applications,” Appl. Soft Comput., 2021, doi: 10.1016/j.asoc.2021.107102.
X. Xu, Y. Zhang, M. Tang, H. Gu, S. Yan, and J. Yang, “Emotion recognition based on double tree complex wavelet transform and machine learning in internet of things,” IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2948884.
A. Ismail, S. Abdlerazek, and I. M. El-Henawy, “Development of smart healthcare system based on speech recognition using support vector machine and dynamic time warping,” Sustain., 2020, doi: 10.3390/su12062403.
Z. Lv, L. Qiao, J. Li, and H. Song, “Deep-Learning-Enabled Security Issues in the Internet of Things,” IEEE Internet Things J., 2021, doi: 10.1109/JIOT.2020.3007130.
H. Zhang, Z. Fu, and K. I. Shu, “Recognizing Ping-Pong Motions Using Inertial Data Based on Machine Learning Classification Algorithms,” IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2953772.
G. Nagasubramanian, R. K. Sakthivel, R. Patan, M. Sankayya, M. Daneshmand, and A. H. Gandomi, “Ensemble Classification and IoT-Based Pattern Recognition for Crop Disease Monitoring System,” IEEE Internet Things J., 2021, doi: 10.1109/JIOT.2021.3072908.
J. Sheth and B. Dezfouli, “Enhancing the Energy-Efficiency and Timeliness of IoT Communication in WiFi Networks,” IEEE Internet Things J., 2019, doi: 10.1109/JIOT.2019.2927588.
Y. Zhao et al., “Device-free secure interaction with hand gestures in wifi-enabled iot environment,” IEEE Internet Things J., 2021, doi: 10.1109/JIOT.2020.3032623.
H. Pirayesh, P. K. Sangdeh, and H. Zeng, “Coexistence of Wi-Fi and IoT Communications in WLANs,” IEEE Internet Things J., 2020, doi: 10.1109/JIOT.2020.2986110.
K. H. Chang, “Bluetooth: A viable solution for IoT? [Industry Perspectives],” IEEE Wireless Communications. 2014, doi: 10.1109/MWC.2014.7000963.
M. Collotta, G. Pau, T. Talty, and O. K. Tonguz, “Bluetooth 5: A Concrete Step Forward toward the IoT,” IEEE Commun. Mag., 2018, doi: 10.1109/MCOM.2018.1700053.
Q. Liu, W. Ijntema, A. Drif, P. Pawelczak, M. Zuniga, and K. S. Yildirim, “Perpetual Bluetooth Communications for the IoT,” IEEE Sens. J., 2021, doi: 10.1109/JSEN.2020.3012814.
J. Lee and J. Lee, “Prediction-based energy saving mechanism in 3GPP NB-IoT networks,” Sensors (Switzerland), 2017, doi: 10.3390/s17092008.
G. Jia, Y. Zhu, Y. Li, Z. Zhu, and L. Zhou, “Analysis of the Effect of the Reliability of the NB-Iot Network on the Intelligent System,” IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2932870.
A. Larmo, A. Ratilainen, and J. Saarinen, “Impact of coAP and MQTT on NB-IoT system performance,” Sensors (Switzerland), 2019, doi: 10.3390/s19010007.
K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim, “Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT Scenarios,” IEEE Access. 2020, doi: 10.1109/ACCESS.2020.2970118.
A. M. Escolar, J. M. Alcaraz-Calero, P. Salva-Garcia, J. B. Bernabe, and Q. Wang, “Adaptive Network Slicing in Multi-Tenant 5G IoT Networks,” IEEE Access, 2021, doi: 10.1109/ACCESS.2021.3051940.
S. Ahmadzadeh, G. Parr, and W. Zhao, “A Review on Communication Aspects of Demand Response Management for Future 5G IoT- Based Smart Grids,” IEEE Access. 2021, doi: 10.1109/ACCESS.2021.3082430.
C. Gomez, J. C. Veras, R. Vidal, L. Casals, and J. Paradells, “A sigfox energy consumption model,” Sensors (Switzerland), 2019, doi: 10.3390/s19030681.
C. Fourtet and B. Ponsard, “An introduction to Sigfox radio system,” in LPWAN Technologies for IoT and M2M Applications, 2020.
Q. Zhou, K. Zheng, L. Hou, J. Xing, and R. Xu, “Design and implementation of open LORa for IoT,” IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2930243.
J. L. Gallardo, M. A. Ahmed, and N. Jara, “LoRa IoT-Based Architecture for Advanced Metering Infrastructure in Residential Smart Grid,” IEEE Access, 2021, doi: 10.1109/ACCESS.2021.3110873.
M. S. Islam, M. T. Islam, A. F. Almutairi, G. K. Beng, N. Misran, and N. Amin, “Monitoring of the human body signal through the Internet of Things (IoT) based LoRa wireless network system,” Appl. Sci., 2019, doi: 10.3390/app9091884.
K. Sohraby, D. Minoli, B. Occhiogrosso, and W. Wang, “A Review of Wireless and Satellite-Based M2M/IoT Services in Support of Smart Grids,” Mob. Networks Appl., 2018, doi: 10.1007/s11036-017-0955-1.
J. Wei, J. Han, and S. Cao, “Satellite iot edge intelligent computing: A research on architecture,” Electron., 2019, doi: 10.3390/electronics8111247.
R. Ortigueira, J. A. Fraire, A. Becerra, T. Ferrer, and S. Cespedes, “RESS-IoT: A Scalable Energy-Efficient MAC Protocol for Direct-to-Satellite IoT,” IEEE Access, 2021, doi: 10.1109/ACCESS.2021.3134246.
N. Chen and M. Okada, “Toward 6G Internet of Things and the Convergence with RoF System,” IEEE Internet Things J., 2021, doi: 10.1109/JIOT.2020.3047613.
H. Guo, J. Liu, and H. Qin, “Collaborative Mobile Edge Computation Offloading for IoT over Fiber-Wireless Networks,” IEEE Netw., 2018, doi: 10.1109/MNET.2018.1700139.
F. Deng, P. Zuo, K. Wen, X. Wu, and Y. He, “Low Delay Technology Research of Transmission Line Tower Monitoring Network Integrating WSN and RFID,” IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2933462.
S. Zoppi, A. Van Bemten, H. M. Gursu, M. Vilgelm, J. Guck, and W. Kellerer, “Achieving Hybrid Wired/Wireless Industrial Networks with WDetServ: Reliability-Based Scheduling for Delay Guarantees,” IEEE Trans. Ind. Informatics, 2018, doi: 10.1109/TII.2018.2803122.
A. Thakkar and K. Kotecha, “Cluster head election for energy and delay constraint applications of wireless sensor network,” IEEE Sens. J., 2014, doi: 10.1109/JSEN.2014.2312549.
A. Suzain, R. A. Rashid, M. A. Sarijari, A. S. Abdullah, and O. A. Aziz, “Machine learning based lightweight interference mitigation scheme for wireless sensor network,” Telkomnika (Telecommunication Comput. Electron. Control., 2020, doi: 10.12928/TELKOMNIKA.V18I4.14879.
X. Chang et al., “Accuracy-aware interference modeling and measurement in wireless sensor networks,” IEEE Trans. Mob. Comput., 2016, doi: 10.1109/TMC.2015.2416182.
G. D. O’Mahony, J. T. Curran, P. J. Harris, and C. C. Murphy, “Interference and intrusion in wireless sensor networks,” IEEE Aerosp. Electron. Syst. Mag., 2020, doi: 10.1109/MAES.2020.2970262.
V. Seedha Devi, T. Ravi, and S. B. Priya, “Cluster Based Data Aggregation Scheme for Latency and Packet Loss Reduction in WSN,” Comput. Commun., 2020, doi: 10.1016/j.comcom.2019.10.003.
O. J. Pandey and R. M. Hegde, “Low-Latency and Energy-Balanced Data Transmission over Cognitive Small World WSN,” IEEE Trans. Veh. Technol., 2018, doi: 10.1109/TVT.2018.2839562.
M. U. Rehman, I. Uddin, M. Adnan, A. Tariq, and S. Malik, “VTA-SMAC: Variable Traffic-Adaptive Duty Cycled Sensor MAC Protocol to Enhance Overall QoS of S-MAC Protocol,” IEEE Access, 2021, doi: 10.1109/ACCESS.2021.3061357.
S. Govindaraj and S. N. Deepa, “Network Energy Optimization of IOTs in Wireless Sensor Networks Using Capsule Neural Network Learning Model,” Wirel. Pers. Commun., 2020, doi: 10.1007/s11277-020-07688-2.
B. A. Muzakkari, M. A. Mohamed, M. F. A. Kadir, and M. Mamat, “Queue and Priority-Aware Adaptive Duty Cycle Scheme for Energy Efficient Wireless Sensor Networks,” IEEE Access, 2020, doi: 10.1109/ACCESS.2020.2968121.
G. Samara and M. Aljaidi, “Efficient energy, cost reduction, and QoS based routing protocol for wireless sensor networks,” Int. J. Electr. Comput. Eng., 2019, doi: 10.11591/ijece.v9i1.pp496-504.
W. A. Jabbar, W. K. Saad, and M. Ismail, “MEQSA-OLSRv2: A multicriteria-based hybrid multipath protocol for energy-efficient and QoS-aware data routing in MANET-WSN convergence scenarios of IoT,” IEEE Access, 2018, doi: 10.1109/ACCESS.2018.2882853.
W. Twayej, M. Khan, and H. S. Al-Raweshidy, “Network Performance Evaluation of M2M with Self Organizing Cluster Head to Sink Mapping,” IEEE Sens. J., 2017, doi: 10.1109/JSEN.2017.2711660.
N. Ajmi, A. Helali, P. Lorenz, and R. Mghaieth, “MWCSGA-Multi weight chicken swarm based genetic algorithm for energy efficient clustered wireless sensor network,” Sensors (Switzerland), 2021, doi: 10.3390/s21030791.
A. Hamzah, M. Shurman, O. Al-Jarrah, and E. Taqieddin, “Energy-efficient fuzzy-logic-based clustering technique for hierarchical routing protocols in wireless sensor networks,” Sensors (Switzerland), 2019, doi: 10.3390/s19030561.
I. S. Alshawi, L. Yan, W. Pan, and B. Luo, “Lifetime enhancement in wireless sensor networks using fuzzy approach and a-star algorithm,” IEEE Sens. J., 2012, doi: 10.1109/JSEN.2012.2207950.
S. Ahmed, S. Gupta, A. Suri, and S. Sharma, “Adaptive energy efficient fuzzy: An adaptive and energy efficient fuzzy clustering algorithm for wireless sensor network-based landslide detection system,” IET Networks, 2021, doi: 10.1049/ntw2.12004.
A. Panchal and R. K. Singh, “EHCR-FCM: Energy Efficient Hierarchical Clustering and Routing using Fuzzy C-Means for Wireless Sensor Networks,” Telecommun. Syst., 2021, doi: 10.1007/s11235-020-00712-7.
O. Singh, M. Yadav, P. Yadav, V. Rishiwal, D. S. Jat, and P. Thakur, “QoS-Attentive Learning-based Routing for Scalable WSNs,” in ACM International Conference Proceeding Series, 2021, doi: 10.1145/3484824.3484906.
A. M. Shamsan Saleh, B. M. Ali, M. F. A. Rasid, and A. Ismail, “A self-optimizing scheme for energy balanced routing in wireless sensor networks using sensorAnt,” Sensors (Switzerland), 2012, doi: 10.3390/s120811307.
R. Sinde, S. Kaijage, and K. Njau, “Cluster based wireless sensor network for forests environmental monitoring,” Int. J. Adv. Technol. Eng. Explor., 2020, doi: 10.19101/IJATEE.2019.650083.
R. Levie, C. Yapar, G. Kutyniok, and G. Caire, “RadioUNet: Fast Radio Map Estimation with Convolutional Neural Networks,” IEEE Trans. Wirel. Commun., 2021, doi: 10.1109/TWC.2021.3054977.
U. Masood, H. Farooq, A. Imran, and A. Abu-Dayya, “Interpretable AI-based Large-scale 3D Pathloss Prediction Model for enabling Emerging Self-Driving Networks,” IEEE Trans. Mob. Comput., 2022, doi: 10.1109/TMC.2022.3147191.
S. P. Sotiroudis, P. Sarigiannidis, S. K. Goudos, and K. Siakavara, “Fusing Diverse Input Modalities for Path Loss Prediction: A Deep Learning Approach,” IEEE Access, 2021, doi: 10.1109/ACCESS.2021.3059589.
A. M. Aldosary, S. A. Aldossari, K. C. Chen, E. M. Mohamed, and A. Al-Saman, “Predictive wireless channel modeling of mmwave bands using machine learning,” Electron., 2021, doi: 10.3390/electronics10243114.
H. M. Jawad et al., “Accurate Empirical Path-Loss Model Based on Particle Swarm Optimization for Wireless Sensor Networks in Smart Agriculture,” IEEE Sens. J., 2020, doi: 10.1109/JSEN.2019.2940186.
X. Lv, J. Li, X. Jia, and B. Yang, “Modeling for train-ground communication channel based on WSN,” in Proceedings of the 2015 27th Chinese Control and Decision Conference, CCDC 2015, 2015, doi: 10.1109/CCDC.2015.7162859.
M. Gigli and S. Koo, “Internet of Things: Services and Applications Categorization,” Adv. Internet Things, 2011, doi: 10.4236/ait.2011.12004.
L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Comput. Networks, 2010, doi: 10.1016/j.comnet.2010.05.010.
M. Syafrudin, G. Alfian, N. L. Fitriyani, and J. Rhee, “Performance analysis of IoT-based sensor, big data processing, and machine learning model for real-time monitoring system in automotive manufacturing,” Sensors (Switzerland), 2018, doi: 10.3390/s18092946.
M. Yu, F. Xu, W. Hu, J. Sun, and G. Cervone, “Using Long Short-Term Memory (LSTM) and Internet of Things (IoT) for Localized Surface Temperature Forecasting in an Urban Environment,” IEEE Access, 2021, doi: 10.1109/ACCESS.2021.3116809.
A. Srinivasan, “IoT Cloud Based Real Time Automobile Monitoring System,” in 2018 3rd IEEE International Conference on Intelligent Transportation Engineering, ICITE 2018, 2018, doi: 10.1109/ICITE.2018.8492706.
O. M. Bushnaq, A. Chaaban, and T. Y. Al-Naffouri, “The Role of UAV-IoT Networks in Future Wildfire Detection,” IEEE Internet Things J., 2021, doi: 10.1109/JIOT.2021.3077593.
M. R. Azghadi et al., “Hardware Implementation of Deep Network Accelerators towards Healthcare and Biomedical Applications,” IEEE Trans. Biomed. Circuits Syst., 2020, doi: 10.1109/TBCAS.2020.3036081.
S. Vimal, Y. Harold Robinson, S. Kadry, H. V. Long, and Y. Nam, “IoT based smart health monitoring with CNN using edge computing,” J. Internet Technol., 2021.
R. Ferdousi, M. A. Hossain, and A. El Saddik, “Early-Stage Risk Prediction of Non-Communicable Disease Using Machine Learning in Health CPS,” IEEE Access, 2021, doi: 10.1109/ACCESS.2021.3094063.
Y. Zhang, J. Wen, G. Yang, Z. He, and J. Wang, “Path loss prediction based on machine learning: Principle, method, and data expansion,” Appl. Sci., vol. 9, no. 9, 2019, doi: 10.3390/app9091908.
S. P. Sotiroudis, S. K. Goudos, and K. Siakavara, “Neural Networks and Random Forests: A Comparison Regarding Prediction of Propagation Path Loss for NB-IoT Networks,” 2019 8th Int. Conf. Mod. Circuits Syst. Technol. MOCAST 2019, 2019, doi: 10.1109/MOCAST.2019.8741751.
N. Faruk et al., “Path Loss Predictions in the VHF and UHF Bands within Urban Environments: Experimental Investigation of Empirical, Heuristics and Geospatial Models,” IEEE Access, vol. 7, pp. 77293–77307, 2019, doi: 10.1109/ACCESS.2019.2921411.
S. K. Gharghan, R. Nordin, A. M. Jawad, H. M. Jawad, and M. Ismail, “Adaptive Neural Fuzzy Inference System for Accurate Localization of Wireless Sensor Network in Outdoor and Indoor Cycling Applications,” IEEE Access, 2018, doi: 10.1109/ACCESS.2018.2853996.
H. A. O. Cruz, R. N. A. Nascimento, J. P. L. Araujo, E. G. Pelaes, and G. P. S. Cavalcante, “Methodologies for path loss prediction in LTE-1.8 GHz networks using neuro-fuzzy and ANN,” SBMO/IEEE MTT-S Int. Microw. Optoelectron. Conf. IMOC 2017, 2017, doi: 10.1109/IMOC.2017.8121127.
A. Agrawal, R. Raj, and S. Porwal, “Vision-based multimodal human-computer interaction using hand and head gestures,” in 2013 IEEE Conference on Information and Communication Technologies, ICT 2013, 2013, doi: 10.1109/CICT.2013.6558300.
P. Akpojotor, A. Adetunmbi, B. Alese, and A. Oluwatope, “Automatic license plate recognition on microprocessors and custom computing platforms: A review,” IET Image Processing. 2021, doi: 10.1049/ipr2.12262.
A. Shalaby, R. Gad, E. E. D. Hemdan, and N. El-Fishawy, “An efficient multi-factor authentication scheme based CNNs for securing ATMs over cognitive-IoT,” PeerJ Comput. Sci., 2021, doi: 10.7717/peerj-cs.381.
T. C. Hung and H. H. Trung, “Energy savings in applications for wireless sensor networks time critical requirements,” Int. J. Comput. Networks Commun., vol. 8, no. 4, pp. 47–58, 2016, doi: 10.5121/ijcnc.2016.8403.
X. Liu and J. Wu, “A method for energy balance and data transmission optimal routing in wireless sensor networks,” Sensors (Switzerland), vol. 19, no. 13, pp. 1–14, 2019, doi: 10.3390/s19133017.
V. S. Chua et al., “Visual IoT: Ultra-Low-Power Processing Architectures and Implications,” IEEE Micro, 2017, doi: 10.1109/MM.2017.4241343.
G. S. Arumugam and T. Ponnuchamy, “EE-LEACH: development of energy-efficient LEACH Protocol for data gathering in WSN,” Eurasip J. Wirel. Commun. Netw., 2015, doi: 10.1186/s13638-015-0306-5.
A. Wahab, F. A. Mustika, R. B. Bahaweres, D. Setiawan, and M. Alaydrus, “Energy efficiency and loss of transmission data on Wireless Sensor Network with obstacle,” 2016 10th Int. Conf. Telecommun. Syst. Serv. Appl., 2016.
L. Mottola and G. Pietro Picco, “MUSTER: Adaptive energy-aware multisink routing in wireless sensor networks,” IEEE Trans. Mob. Comput., 2011, doi: 10.1109/TMC.2010.250.
G. S. Brar, S. Rani, V. Chopra, R. Malhotra, H. Song, and S. H. Ahmed, “Energy efficient direction-based PDORP routing protocol for WSN,” IEEE Access, 2016, doi: 10.1109/ACCESS.2016.2576475.
W. Guo, W. Zhang, and G. Lu, “PEGASIS protocol in wireless sensor network based on an improved ant colony algorithm,” 2nd Int. Work. Educ. Technol. Comput. Sci. ETCS 2010, 2010, doi: 10.1109/ETCS.2010.285.
S. Misra and P. Dias Thomasinous, “A simple, least-time, and energy-efficient routing protocol with one-level data aggregation for wireless sensor networks,” J. Syst. Softw., 2010, doi: 10.1016/j.jss.2009.12.021.
S. R. Heikalabad, M. K. Mirnia, N. Rahmani, S. Ebadi, A. H. Navin, and M. Golsorkhtabar, “REACH: The new routing algorithm based on energy aware clustering hierarchical for lifetime increasing in wireless sensor networks,” ICEIE 2010 - 2010 Int. Conf. Electron. Inf. Eng. Proc., 2010, doi: 10.1109/ICEIE.2010.5559783.
O. Younis and S. Fahmy, “HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks,” IEEE Trans. Mob. Comput., 2004, doi: 10.1109/TMC.2004.41.
R. Bria, A. Wahab, and M. Alaydrus, “Energy Efficiency Analysis of TEEN Routing Protocol with Isolated Nodes,” Proc. 2019 4th Int. Conf. Informatics Comput. ICIC 2019, 2019, doi: 10.1109/ICIC47613.2019.8985668.
S. R. Nabavi, N. Osati Eraghi, and J. Akbari Torkestani, “Intelligent Optimization of QoS in Wireless Sensor Networks Using Multiobjective Grey Wolf Optimization Algorithm,” Wirel. Commun. Mob. Comput., 2022, doi: 10.1155/2022/5385502.
G. Liang, D. Niu, and Y. Liang, “Sustainability evaluation of renewable energy incubators using interval type-II fuzzy AHP-TOPSIS with MEA-MLSSVM,” Sustain., 2021, doi: 10.3390/su13041796.
I. Halkijevic, Z. Vukovic, and D. Vouk, “Indicators and a Neuro-Fuzzy Based Model for the Evaluation of Water Supply Sustainability,” Water Resour. Manag., 2017, doi: 10.1007/s11269-017-1695-5.
Y. Zhang, P. Geng, C. B. Sivaparthipan, and B. A. Muthu, “Big data and artificial intelligence based early risk warning system of fire hazard for smart cities,” Sustain. Energy Technol. Assessments, 2021, doi: 10.1016/j.seta.2020.100986.
W. Deng, G. Wang, X. Zhang, J. Xu, and G. Li, “A multi-granularity combined prediction model based on fuzzy trend forecasting and particle swarm techniques,” Neurocomputing, 2016, doi: 10.1016/j.neucom.2015.09.040.
N. Ravi and S. Mercy Shalinie, “Semisupervised-Learning-Based Security to Detect and Mitigate Intrusions in IoT Network,” IEEE Internet Things J., 2020, doi: 10.1109/JIOT.2020.2993410.
W. Elsayed, M. Elhoseny, S. Sabbeh, and A. Riad, “Self-maintenance model for Wireless Sensor Networks,” Comput. Electr. Eng., 2018, doi: 10.1016/j.compeleceng.2017.12.022.
S. Cui, Y. Cao, G. Sun, and S. Bin, “A new energy-aware wireless sensor network evolution model based on complex network,” Eurasip J. Wirel. Commun. Netw., 2018, doi: 10.1186/s13638-018-1240-0.
L. Jorguseski, A. Pais, F. Gunnarsson, A. Centonza, and C. Willcock, “Self-organizing networks in 3GPP: Standardization and future trends,” IEEE Commun. Mag., 2014, doi: 10.1109/MCOM.2014.6979983.
H. Fourati, R. Maaloul, L. Chaari, and M. Jmaiel, “Comprehensive survey on self-organizing cellular network approaches applied to 5G networks,” Comput. Networks, vol. 199, 2021, doi: 10.1016/j.comnet.2021.108435.
DOI: https://doi.org/10.18196/jrc.v3i4.15539
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Galang Persada Nurani Hakim, Diah Septiyana
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com