Intelligent Hardware-Software Processing of High-Frequency Scanning Data
Abstract
Keywords
Full Text:
PDFReferences
J. da Motta Singer et al., “Assessing socioeconomic bias of exposure to urban air pollution: an autopsy-based study in São Paulo, Brazil,” The Lancet Regional Health - Americas, vol. 22, p. 100500, 2023, doi: 10.1016/j.lana.2023.100500.
J. Badach, W. Wojnowski, and J. Gębicki, “Spatial aspects of urban air quality management: Estimating the impact of micro-scale urban form on pollution dispersion,” Computers, Environment and Urban Systems, vol. 99, p. 101890, 2023, doi: 10.1016/j.compenvurbsys.2022.101890.
P. Hystad, S. Yusuf, and M. Brauer, “Air pollution health impacts: the knowns and unknowns for reliable global burden calculations,” Cardiovascular Research, vol. 116, no. 11, pp. 1794–1796, 2020, doi: 10.1093/cvr/cvaa092.
A. Bayramova, D. J. Edwards, C. Roberts, and I. Rillie, “Enhanced safety in complex socio-technical systems via safety-in-cohesion,” Safety Science, vol. 164, p. 106176, 2023, doi: 10.1016/j.ssci.2023.106176.
R. Dârmon, “Probabilistic Methods to Assess the Fire Risk of an Industrial Building,” Procedia Manufacturing, vol. 46, pp. 543–548, 2020, doi: 10.1016/j.promfg.2020.03.078.
M. A. Ibrahim, A. Lönnermark, and W. Hogland, “Safety at waste and recycling industry: Detection and mitigation of waste fire accidents,” Waste Management, vol. 141, pp. 271–281, 2022, doi: 10.1016/j.wasman.2022.02.004.
S. Zheng et al., “Effects of short-term exposure to gaseous pollutants on metabolic health indicators of patients with metabolic syndrome in Northwest China,” Ecotoxicology and Environmental Safety, vol. 249, p. 114438, 2023, doi: 10.1016/j.ecoenv.2022.114438.
H. S. Iyer et al., “Impacts of long-term ambient particulate matter and gaseous pollutants on circulating biomarkers of inflammation in male and female health professionals,” Environmental Research, vol. 214, p. 113810, 2022, doi: 10.1016/j.envres.2022.113810.
L. M. G. Peláez, J. M. Santos, T. T. de Almeida Albuquerque, N. C. Reis Jr, W. L. Andreão, and M. de Fátima Andrade, “Air quality status and trends over large cities in South America,” Environmental Science & Policy, vol. 114, pp. 422-435, 2020.
World Health Organization. WHO ambient air quality database, 2022 update: status report. World Health Organization, 2023.
P. Lott and O. Deutschmann, “Heterogeneous chemical reactions—A cornerstone in emission reduction of local pollutants and greenhouse gases,” Proceedings of the Combustion Institute, vol. 39, no. 3, pp. 3183–3215, 2023, doi: 10.1016/j.proci.2022.06.001.
S. Harari, G. Raghu, A. Caminati, M. Cruciani, M. Franchini, and P. Mannucci, “Fibrotic interstitial lung diseases and air pollution: a systematic literature review,” European Respiratory Review, vol. 29, no. 157, p. 200093, 2020, doi: 10.1183/16000617.0093-2020.
H. R. Shwetha, S. M. Sharath, B. Guruprasad, and S. B. Rudraswamy, “MEMS based metal oxide semiconductor carbon dioxide gas sensor,” Micro and Nano Engineering, vol. 16, p. 100156, 2022, doi: 10.1016/j.mne.2022.100156.
X. Yin et al., “Near-infrared laser photoacoustic gas sensor for simultaneous detection of CO and H2S,” Optics Express, vol. 29, no. 21, p. 34258, 2021, doi: 10.1364/oe.441698.
I. Ahmed, G. Jeon, and F. Piccialli, “From Artificial Intelligence to Explainable Artificial Intelligence in Industry 4.0: A Survey on What, How, and Where,” IEEE Transactions on Industrial Informatics, vol. 18, no. 8, pp. 5031–5042, 2022, doi: 10.1109/tii.2022.3146552.
B. Kim, S. Lee, and J. Kim, “Inverse design of porous materials using artificial neural networks,” Science Advances, vol. 6, no. 1, 2020, doi: 10.1126/sciadv.aax9324.
P. G. Asteris and V. G. Mokos, “Concrete compressive strength using artificial neural networks,” Neural Computing and Applications, vol. 32, no. 15, pp. 11807–11826, 2019, doi: 10.1007/s00521-019-04663-2.
D. A. Gavrilov, A. V. Melerzanov, N. N. Shchelkunov, and E. I. Zakirov, “Use of Neural Network-Based Deep Learning Techniques for the Diagnostics of Skin Diseases,” Biomedical Engineering, vol. 52, no. 5, pp. 348–352, 2019, doi: 10.1007/s10527-019-09845-9.
K.-K. Mak and M. R. Pichika, “Artificial intelligence in drug development: present status and future prospects,” Drug Discovery Today, vol. 24, no. 3, pp. 773–780, 2019, doi: 10.1016/j.drudis.2018.11.014.
K. C. S, “Hybrid models for intraday stock price forecasting based on artificial neural networks and metaheuristic algorithms,” Pattern Recognition Letters, vol. 147, pp. 124–133, 2021, doi: 10.1016/j.patrec.2021.03.030.
M. Malesa and P. Rajkiewicz, “Quality Control of PET Bottles Caps with Dedicated Image Calibration and Deep Neural Networks,” Sensors, vol. 21, no. 2, p. 501, 2021, doi: 10.3390/s21020501.
Q. Liang, “Production Logistics Management of Industrial Enterprises Based on Wavelet Neural Network,” Journal Européen des Systèmes Automatisés, vol. 53, no. 4, pp. 581–588, 2020, doi: 10.18280/jesa.530418.
P. W. Alexander, L. T. Di Benedetto, and D. B. Hibbert, “A field-portable gas analyzer with an array of six semiconductor sensors. Part 1: Quantitative determination of ethanol,” Field Analytical Chemistry & Technology, vol. 2, no. 3, pp. 135–143, 1998.
M. Khatami, A. Sujatmiko, and A. Asrori, “An Analysis of Emission Exhaust Gas on 4-Stroke Engine Based on IOT Gas Analyzer,” Logic: Jurnal Rancang Bangun Dan Teknologi, vol. 23, no. 2, pp. 104–110, 2023.
A. M. Trunin, A. N. Ragozin, and S. N. Darovskih, "An Investigation of the Application of an Artificial Neural Network and Machine Learning to Improve the Efficiency of Gas Analyzer Systems in Assessing the State of the Environment," 2021 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), pp. 571-575, 2021, doi: 10.1109/ICIEAM51226.2021.9446406.
G. Zhang and X. Wu, “A novel CO2 gas analyzer based on IR absorption,” Optics and Lasers in Engineering, vol. 42, no. 2, pp. 219–231, 2004, doi: 10.1016/j.optlaseng.2003.08.001.
J. L. G. Medialdea, M. E. C. Manamparan, M. G. M. Sorita, E. L. Ponce, and A. A. Beltran Jr., “A novel thermal gas analyzer using adaptive neuro-fuzzy inference system (ANFIS),” Institute of Electronics Engineers of the Philippines (IECEP) Journal, vol. 2, no. 1, pp. 27–31, 2013.
F. A. Ghani, M. Rivaie, M. Yusoff, and M. Puteh, "A Review of Artificial Neural Network Applications in Variants of Optimization Algorithms," 2022 International Visualization, Informatics and Technology Conference (IVIT), pp. 115-123, 2022, doi: 10.1109/IVIT55443.2022.10033339.
G. Piccinini, “The First Computational Theory of Cognition,” Neurocognitive Mechanisms: Explaining Biological Cognition, pp. 107–127, 2020, doi: 10.1093/oso/9780198866282.003.0006.
O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad, “State-of-the-art in artificial neural network applications: A survey,” Heliyon, vol. 4, no. 11, p. e00938, 2018, doi: 10.1016/j.heliyon.2018.e00938.
M. G. M. Abdolrasol et al., “Artificial Neural Networks Based Optimization Techniques: A Review,” Electronics, vol. 10, no. 21, p. 2689, 2021, doi: 10.3390/electronics10212689.
S. Bai, G. Fang, and J. Zhou, “Construction of three-dimensional extrusion limit diagram for magnesium alloy using artificial neural network and its validation,” Journal of Materials Processing Technology, vol. 275, p. 116361, 2020, doi: 10.1016/j.jmatprotec.2019.116361.
N. Lamii, M. Fri, C. Mabrouki, and E. A. Semma, “Using Artificial Neural Network Model for Berth Congestion Risk Prediction,” IFAC-PapersOnLine, vol. 55, no. 12, pp. 592–597, 2022, doi: 10.1016/j.ifacol.2022.07.376.
A. Bouteska, P. Hajek, B. Fisher, and M. Z. Abedin, “Nonlinearity in forecasting energy commodity prices: Evidence from a focused time-delayed neural network,” Research in International Business and Finance, vol. 64, p. 101863, 2023, doi: 10.1016/j.ribaf.2022.101863.
A. Wang, W. Zhang, and X. Wei, “A review on weed detection using ground-based machine vision and image processing techniques,” Computers and Electronics in Agriculture, vol. 158, pp. 226–240, 2019, doi: 10.1016/j.compag.2019.02.005.
M. Mirbod and M. Shoar, “Intelligent Concrete Surface Cracks Detection using Computer Vision, Pattern Recognition, and Artificial Neural Networks,” Procedia Computer Science, vol. 217, pp. 52–61, 2023, doi: 10.1016/j.procs.2022.12.201.
S. K. Sheshadri, D. Gupta, and M. R. Costa-Jussà, “A Voyage on Neural Machine Translation for Indic Languages,” Procedia Computer Science, vol. 218, pp. 2694–2712, 2023, doi: 10.1016/j.procs.2023.01.242.
L. Tessarini and A. M. F. Fileti, “Audio signals and artificial neural networks for classification of plastic resins for recycling,” Digital Chemical Engineering, vol. 5, p. 100059, 2022, doi: 10.1016/j.dche.2022.100059.
V. Balaji et al., “Deep Transfer Learning Technique for Multimodal Disease Classification in Plant Images,” Contrast Media & Molecular Imaging, vol. 2023, pp. 1–8, 2023, doi: 10.1155/2023/5644727.
X. Liu, S. Xiong, X. Wang, T. Liang, H. Wang, and X. Liu, “A compact multi-branch 1D convolutional neural network for EEG-based motor imagery classification,” Biomedical Signal Processing and Control, vol. 81, p. 104456, 2023, doi: 10.1016/j.bspc.2022.104456.
A. Abdalla et al., “Fine-tuning convolutional neural network with transfer learning for semantic segmentation of ground-level oilseed rape images in a field with high weed pressure,” Computers and Electronics in Agriculture, vol. 167, p. 105091, 2019, doi: 10.1016/j.compag.2019.105091.
F. Lu et al., “Prediction of amorphous forming ability based on artificial neural network and convolutional neural network,” Computational Materials Science, vol. 210, p. 111464, Jul. 2022, doi: 10.1016/j.commatsci.2022.111464.
I. Hanson and J. Bedford, “A recurrent neural network for identifying delivery errors during real-time portal dosimetry,” Physica Medica, vol. 104, pp. S156–S157, 2022, doi: 10.1016/s1120-1797(22)02493-0.
F. Sinzinger, J. van Kerkvoorde, D. H. Pahr, and R. Moreno, “Predicting the trabecular bone apparent stiffness tensor with spherical convolutional neural networks,” Bone Reports, vol. 16, p. 101179, 2022, doi: 10.1016/j.bonr.2022.101179.
M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019, doi: 10.1016/j.jcp.2018.10.045.
S. Jaballah, G. Neri, H. Dahman, N. Donato, and L. E. Mir, “Development of a Ternary AlMgZnO-Based Conductometric Sensor for Carbon Oxides Sensing,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–7, 2021, doi: 10.1109/tim.2021.3066169.
W. Yan et al., “Conductometric gas sensing behavior of WS2 aerogel,” FlatChem, vol. 5, pp. 1–8, 2017, doi: 10.1016/j.flatc.2017.08.003.
Y. Kim, S. Goo, and J. S. Lim, “Multi-Gas Analyzer Based on Tunable Filter Non-Dispersive Infrared Sensor: Application to the Monitoring of Eco-Friendly Gas Insulated Switchgears,” Sensors, vol. 22, no. 22, p. 8662, 2022, doi: 10.3390/s22228662.
Z. Witkiewicz, K. Jasek, and M. Grabka, “Semiconductor Gas Sensors for Detecting Chemical Warfare Agents and Their Simulants,” Sensors, vol. 23, no. 6, p. 3272, 2023, doi: 10.3390/s23063272.
Y. Liang et al., “Field comparison of electrochemical gas sensor data correction algorithms for ambient air measurements,” Sensors and Actuators B: Chemical, vol. 327, p. 128897, 2021, doi: 10.1016/j.snb.2020.128897.
Q. Xu et al., “Comprehensive study of the low-temperature oxidation chemistry by synchrotron photoionization mass spectrometry and gas chromatography,” Combustion and Flame, vol. 236, p. 111797, 2022, doi: 10.1016/j.combustflame.2021.111797.
S. Golgiyaz, M. F. Talu, and C. Onat, “Artificial neural network regression model to predict flue gas temperature and emissions with the spectral norm of flame image,” Fuel, vol. 255, p. 115827, 2019, doi: 10.1016/j.fuel.2019.115827.
A. Mähler, T. Schütte, J. Steiniger, and M. Boschmann, “The Berlin-Buch respiration chamber for energy expenditure measurements,” European Journal of Applied Physiology, vol. 123, no. 6, pp. 1359–1368, 2023, doi: 10.1007/s00421-023-05164-w.
D. d’Hose, P. Danhier, H. Northshield, P. Isenborghs, B. F. Jordan, and B. Gallez, “A versatile EPR toolbox for the simultaneous measurement of oxygen consumption and superoxide production,” Redox Biology, vol. 40, p. 101852, 2021, doi: 10.1016/j.redox.2020.101852.
B. Fu et al., “Recent progress on laser absorption spectroscopy for determination of gaseous chemical species,” Applied Spectroscopy Reviews, vol. 57, no. 2, pp. 112–152, 2020, doi: 10.1080/05704928.2020.1857258.
M. Wieland, Y. Li, and S. Martinis, “Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network,” Remote Sensing of Environment, vol. 230, p. 111203, 2019, doi: 10.1016/j.rse.2019.05.022.
A. Akhmadiya, N. Nabiyev, K. Moldamurat, K. Dyussekeyev, and S. Atanov, “Use of Sentinel-1 Dual Polarization Multi-Temporal Data with Gray Level Co-Occurrence Matrix Textural Parameters for Building Damage Assessment,” Pattern Recognition and Image Analysis, vol. 31, no. 2, pp. 240–250, 2021, doi: 10.1134/s1054661821020036.
A. E. Kyzyrkanov, S. K. Atanov, and S. Abdel Rahman Aljawarneh, “Formation control and coordination of swarm robotic systems,” The 7th International Conference on Engineering & MIS 2021, pp. 1-11, 2021, doi: 10.1145/3492547.3492704.
A. Kyzyrkanov, S. Atanov, and S. Aljawarneh, "Coordination of movement of multiagent robotic systems," 2021 16th International Conference on Electronics Computer and Computation (ICECCO), pp. 1-4, 2021, doi: 10.1109/ICECCO53203.2021.9663796.
Z. Oralbekova, Z. Khassenova, B. Mynbayeva, M. Zhartybayeva, and K. Iskakov, “Information system for monitoring of urban air pollution by heavy metals,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 22, no. 3, p. 1590, 2021, doi: 10.11591/ijeecs.v22.i3.pp1590-1600.
K. Laganovska et al., “Portable low-cost open-source wireless spectrophotometer for fast and reliable measurements,” HardwareX, vol. 7, p. e00108, 2020, doi: 10.1016/j.ohx.2020.e00108.
J. S. Botero-Valencia and J. Valencia-Aguirre, “Portable low-cost IoT hyperspectral acquisition device for indoor/outdoor applications,” HardwareX, vol. 10, p. e00216, 2021, doi: 10.1016/j.ohx.2021.e00216.
B. Sivakumar and C. Nanjundaswamy, “Weather monitoring and forecasting system using IoT,” Global Journal of Engineering and Technology Advances, vol. 8, no. 2, pp. 008–016, 2021, doi: 10.30574/gjeta.2021.8.2.0109.
E. J. Davis and B. H. Clowers, “Low-cost Arduino controlled dual-polarity high voltage power supply,” HardwareX, vol. 13, p. e00382, 2023, doi: 10.1016/j.ohx.2022.e00382.
Z. Mukanova, S. Atanov, and M. Jamshidi, "Features of Hardware and Software Smoothing of Experimental Data of Gas Sensors," 2021 IEEE International Conference on Smart Information Systems and Technologies (SIST), pp. 1-6, 2021, doi: 10.1109/SIST50301.2021.9465981.
R. Y. Choi, A. S. Coyner, J. Kalpathy-Cramer, M. F. Chiang, and J. P. Campbell, “Introduction to machine learning, neural networks, and deep learning,” Translational vision science & technology, vol. 9, no. 2, pp. 14-14, 2020.
D. Adams, D.-H. Oh, D.-W. Kim, C.-H. Lee, and M. Oh, “Prediction of SOx–NOx emission from a coal-fired CFB power plant with machine learning: Plant data learned by deep neural network and least square support vector machine,” Journal of Cleaner Production, vol. 270, p. 122310, 2020, doi: 10.1016/j.jclepro.2020.122310.
G. Shen, D. Zhao, and Y. Zeng, “Backpropagation with biologically plausible spatiotemporal adjustment for training deep spiking neural networks,” Patterns, vol. 3, no. 6, p. 100522, 2022, doi: 10.1016/j.patter.2022.100522.
X. Niu, L. Shi, H. Wan, Z. Wang, Z. Shang, and Z. Li, “Dynamic functional connectivity among neuronal population during modulation of extra-classical receptive field in primary visual cortex,” Brain Research Bulletin, vol. 117, pp. 45–53, 2015, doi: 10.1016/j.brainresbull.2015.07.003.
Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks,” Frontiers in Neuroscience, vol. 12, 2018, doi: 10.3389/fnins.2018.00331.
K. Beer et al., “Training deep quantum neural networks,” Nature Communications, vol. 11, no. 1, 2020, doi: 10.1038/s41467-020-14454-2.
G. Zaid, L. Bossuet, F. Dassance, A. Habrard, and A. Venelli, “Ranking Loss: Maximizing the Success Rate in Deep Learning Side-Channel Analysis,” IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 25–55, 2020, doi: 10.46586/tches.v2021.i1.25-55.
A. M. Mouazen, B. Kuang, J. D. Baerdemaeker, and H. Ramon, “Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy,” Geoderma, vol. 158, no. 1–2, pp. 23–31, 2010, doi: 10.1016/j.geoderma.2010.03.001.
J. Bilski, B. Kowalczyk, A. Marchlewska, and J. M. Zurada, “Local Levenberg-Marquardt Algorithm for Learning Feedforwad Neural Networks,” Journal of Artificial Intelligence and Soft Computing Research, vol. 10, no. 4, pp. 299–316, 2020, doi: 10.2478/jaiscr-2020-0020.
E. A. Muravyova and N. N. Uspenskaya, “Development of a Neural Network for a Boiler Unit Generating Water Vapour Control,” Optical Memory and Neural Networks, vol. 27, no. 4, pp. 297–307, 2018, doi: 10.3103/s1060992x18040070.
N. N. S. Torres, H. F. Scherer, O. H. Ando Junior, and J. J. G. Ledesma, “Application of Neural Networks in a Sodium-Nickel Chloride Battery Management System,” Journal of Control, Automation and Electrical Systems, vol. 33, no. 4, pp. 1188–1197, 2022, doi: 10.1007/s40313-021-00847-1.
V. S. Bawa and V. Kumar, “Linearized sigmoidal activation: A novel activation function with tractable non-linear characteristics to boost representation capability,” Expert Systems with Applications, vol. 120, pp. 346–356, 2019, doi: 10.1016/j.eswa.2018.11.042.
J. Feng and S. Lu, “Performance Analysis of Various Activation Functions in Artificial Neural Networks,” Journal of Physics: Conference Series, vol. 1237, no. 2, p. 022030, 2019, doi: 10.1088/1742-6596/1237/2/022030.
Z.A.Mukanova and S.K. Atanov, “Gas analyzer,” Patent for a useful model No. 5141. Bulletin No. 27., Kazakhstan, 2020 [Муканова Ж.А., Атанов С.Б. «Газоанализатор» // Патент РК на полезную модель № 5141. 2020. Бюл. № 27].
Z.A.Mukanova and S.K. Atanov, “Intelligent gas analyzer,” Patent for a useful model No. 8288. Bulletin No. 29., Kazakhstan, 2023 [Муканова Ж.А., Атанов С.Б. «Интеллектуальный газоанализатор» // Патент РК на полезную модель № 8288. 2023. Бюл. № 29].
DOI: https://doi.org/10.18196/jrc.v4i5.18915
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Zhanna Askarovna Mukanova, Sabyrzhan Kubeysinovich Atanov, Mohammad Jamshidi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com