Review of Intelligent and Nature-Inspired Algorithms-Based Methods for Tuning PID Controllers in Industrial Applications

Ramakant S Patil, Sharad P. Jadhav, Machhindranath D. Patil

Abstract


PID controllers can regulate and stabilize processes in response to changes and disturbances. This paper provides a comprehensive review of PID controller tuning methods for industrial applications, emphasizing intelligent and nature-inspired algorithms. Techniques such as Fuzzy Logic (FL), Artificial Neural Networks (ANN), and Adaptive Neuro Fuzzy Inference System (ANFIS) are explored. Additionally, nature-inspired algorithms, including evolutionary algorithms like Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Ant Colony Optimization (ACO), Simulated Annealing (SA), Artificial Bee Colony (ABC), Firefly Algorithm (FA), Cuckoo Search (CS), Harmony Search (HS), and Grey Wolf Optimization (GWO), are examined. While conventional PID tuning methods are valuable, the evolving landscape of control engineering has led to the exploration of intelligent and nature-inspired algorithms to further enhance PID controller performance in specific applications. The study conducts a thorough analysis of these tuning methods, evaluating their effectiveness in industrial applications through a comprehensive literature review. The primary aim is to offer empirical evidence on the efficacy of various algorithms in PID tuning. This work presents a comparative analysis of algorithmic performance and their real-world applications, contributing to a comprehensive understanding of the discussed tuning methods. Findings aim to uncover the strengths and weaknesses of diverse PID tuning methods in industrial contexts, guiding practitioners and researchers. This paper is a sincere effort to address the lack of specific quantitative comparisons in existing literature, bridging the gap in empirical evidence and serving as a valuable reference for optimizing intelligent and nature-inspired algorithms-based PID controllers in various industrial applications. Keywords— PID controller; Intelligent and Nature-Inspired Algorithms; Fuzzy Logic; Artificial Neural Network; Adaptive NeuroFuzzy Inference System; Genetic Algorithm; Particle Swarm Optimization; Differential Evolution; Ant Colony Optimization; Simulated Annealing; Artificial Bee Colony; Firefly Algorithm; Cuckoo Search; Harmony Search; Grey Wolf Optimization.


Keywords


PID controller; Intelligent and Nature-Inspired Algorithms; Fuzzy Logic; Artificial Neural Network; Adaptive NeuroFuzzy Inference System; Genetic Algorithm; Particle Swarm Optimization; Differential Evolution; Ant Colony Optimization; Simulated Annealing;

Full Text:

PDF

References


M. K. Merugumalla, and P. K. Navuri, “Optimized PID controller for BLDC motor using Nature-inspired Algorithms,” International Journal of Applied Engineering Research, vol. 12, no. 1, 2017.

S. Ghosal, R. Darbar, B. Neogi, A. Das, and D. N. Tibarewala, “Application of Swarm Intelligence Computation Techniques in PID Controller Tuning: A Review,” In Proceedings of the International Conference on Information Systems Design and Intelligent Applications, vol. 132, pp. 195–208, 2012. doi: 10.1007/978-3-642-27443-5 23.

H. S. Purnama, T. Sutikno, S. Alavandar and A. C. Subrata, “Intelligent Control Strategies for Tuning PID of Speed Control of DC Motor - A Review,” 2019 IEEE Conference on Energy Conversion (CENCON), pp. 24-30, 2019, doi: 10.1109/CENCON47160.2019.8974782.

J. Nowakova, and M. Pokorny, “Intelligent Controller Design by the Artificial Intelligence Methods,” Sensors, vol. 20, no. 16, pp. 4454, 2020, doi: 10.3390/s20164454.

K. Janprom, W. Permpoonsinsup, S. Wangnipparnto, “Intelligent Tuning of PID Using Metaheuristic Optimization for Temperature and Relative Humidity Control of Comfortable Rooms,” Journal of Control Science and Engineering, pp. 1–13, 2020, doi: 10.1155/2020/2596549.

P. Dziwinski and L. Bartczuk, “A New Auto Adaptive Fuzzy Hybrid Particle Swarm Optimization and Genetic Algorithm,” Journal of Artificial Intelligence and Soft Computing Research, vol. 10, no. 2, pp. 95–111, 2020, doi: 10.2478/jaiscr-2020-0007.

N. Jain, G. Parmar, R. Gupta, and I. Khanam, “Performance evaluation of GWO/PID approach in control of ball hoop system with different objective functions and perturbation,” Cogent Engineering, vol. 5, no. 1, 2018, doi: 10.1080/23311916.2018.1465328.

M. Sharma, P. Verma and L. Mathew, “Design an intelligent controller for a process control system,” 2016 International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH), pp. 217-223, 2016, doi: 10.1109/ICICCS.2016.7542302.

U. Onen, A. Cakan, and I. Ilhan, “Performance comparison of opti- ¨ mization algorithms in LQR controller design for a nonlinear system,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 27: no. 3, pp. 1938–1953, 2019, doi: 10.3906/elk-1808-51.

R. P. Borase, D. K. Maghade, S. Y. Sondkar, and S. N. Pawar, “A review of PID control, tuning methods and applications,” International Journal of Dynamics and Control, vol. 9, pp. 818–827, 2021, doi: 10.1007/s40435-020-00665-4.

H. O. Bansal, and R. Sharma, P. R. Shreeraman, “PID Controller Tuning Techniques: A Review,” Journal of Control Engineering and Technology (JCET), vol. 2, pp. 168-176, 2012.

S. K. Pandey, K. Veeranna, B. Kumar and K. U. Deshmukh, “A Robust Auto-tuning Scheme for PID Controllers,” IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, pp. 47-52, 2020, doi: 10.1109/IECON43393.2020.9254382.

W. V. Jahnavi, Dr. J. N. C. Sekhar, Dr. A. S. Reddy, “A Review on PID Controller Tuning Using Modern Computational Algorithms,” Journal of Emerging Technologies and Innovative Research, vol. 10, no. 8, 2023.

L. J. D. S. Moreira, G. A. Junior, and P. R. Barros, “Time and Frequency Domain Data-driven PID Iterative Tuning,” IFAC-Papers Online, vol. 51, no. 15, pp. 1056-1061, 2018, doi: 10.1016/j.ifacol.2018.09.054.

Karl J. Astrom and Tore Hagglund, ”PID Controllers,” Copyright, 1995 Instrument Society of America, 2nd Edition, ISBN 1-5561 7-5 16-7, 1995.

V. Chopra, S. K. Singla, and L. Dewan, “Comparative Analysis of Tuning a PID Controller using Intelligent Methods,” Acta Polytechnica Hungarica, vol. 11, no. 8, 2014, doi: 10.12700/aph.11.08.2014.08.13.

V. Dubey, H. Goud, and P. C. Sharma, “Role of PID Control Techniques in Process Control System: A Review,” In Data Engineering for Smart Systems, vol. 238, pp. 659–670, 2022, doi: 10.1007/978-981-16-2641- 8 62.

S. Sultaniya and Dr. R. Gupta, “Design of PID Controller using PSO Algorithm for CSTR System,” International Journal of Electronic and Electrical Engineering, vol. 7, no. 9, pp. 971-977, 2014.

D. Karaboga, and B. Basturk, “A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm,” Journal of Global Optimization, vol. 39, pp. 459–471, 2007, doi: 10.1007/s10898-007-9149-x.

C. B. Kadu and C.Y.Patil, “Design and Implementation of Stable PID Controller for Interacting Level Control System,” In 7th International Conference on Communication, Computing and Virtualization, Procedia Computer Science, vol. 79, pp. 737–746, 2016, doi: 10.1016/j.procs.2016.03.097.

B. M. Sarif, D. V. A. Kumar, M. V. G. Rao, “Comparison Study of PID Controller Tuning using Classical/Analytical Methods,” International Journal of Applied Engineering Research, vol. 13, no. 8, pp. 5618-5625, 2018.

N. A. Selamat, T. O. Ramih, A. R. Abdullah, and M. S. Karis, “Performance of PID Controller Tuning based on Particle Swarm Optimization and Firefly Algorithm,” International Journal of Recent Technology and Engineering (IJRTE), vol. 8, no. 3S2, 2019, doi: 10.35940/ijrte.C1042.1083S219.

R. R. D. Maity, R. K. Mudi, and C. Dey, “Nature-inspired and hybrid optimization algorithms on interval Type-2 fuzzy controller for servo processes: a comparative performance study,” Applied Sciences, vol. 2, no. 7, 2020, doi: 10.1007/s42452-020-3024-5.

M. G. M. Abdolrasol, S. M. S. Hussain, T. S. Ustun, M. R. Sarker, M. A. Hannan, R. Mohamed, J. A. Ali, S. Mekhilef, and A. Milad, “Artificial Neural Networks Based Optimization Techniques: A Review,” Electronics, vol. 10, no. 21, 2021, doi: 10.3390/electronics10212689.

I. Juniku, and P. Marango, “PID design with bio-inspired intelligent algorithms for high order systems,” International Journal of Mathematics and Computers in Simulation, vol. 9, 2015.

M. S. Amiri, R. Ramli, M. F. Ibrahim, D. A. Wahab, and N. Aliman, “Adaptive Particle Swarm Optimization of PID Gain Tuning for LowerLimb Human Exoskeleton in Virtual Environment,” Mathematics, vol. 8, no. 11, p. 2040, 2020. doi: 10.3390/math8112040.

S. B. Joseph, E. G. Dada, A. Abidemi, D. O. Oyewola, and B. M. Khammas, “Metaheuristic algorithms for PID controller parameters tuning: review, approaches and open problems,” Science Direct, vol. 8, no. 5, 2022. doi: 10.1016/j.heliyon.2022.e09399.

E. H. E. Bayoumi, and Z. A. Salmeen, “Practical swarm intelligent control brushless DC motor drive system using GSM Technology,” WSEAS Transactions on Circuits and Systems, vol .13, pp. 188–201, 2014.

S. Darvishpoor, A. Darvishpour, M. Escarcega, and M. Hassanalian, “Nature-Inspired Algorithms from Oceans to Space: A Comprehensive Review of Heuristic and Meta-Heuristic Optimization Algorithms and Their Potential Applications in Drones,” Drones, vol. 7, no. 7, 2023, doi: 10.3390/drones7070427.

X. -K. Wang, X. -H. Yang, G. Liu and H. Qian, “Adaptive NeuroFuzzy Inference System PID controller for SG water level of nuclear power plant,” 2009 International Conference on Machine Learning and Cybernetics, pp. 567-572, 2009, doi: 10.1109/ICMLC.2009.5212517.

S. M. Sam and T. S. Angel, “Performance optimization of PID controllers using fuzzy logic,” IEEE International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), pp. 438-442, 2017, doi: 10.1109/ICSTM.2017.8089200.

J. M. S. Ribeiro, M. F. Santos, M. J. Carmo, and M. F. Silva, “Comparison of PID controller tuning methods: analytical/classical techniques versus optimization algorithms,” 2017 18th International Carpathian Control Conference (ICCC), pp. 533-538, 2017, doi: 10.1109/CarpathianCC.2017.7970458.

C. -T. Chao, N. Sutarna, J. -S. Chiou, and C. -J. Wang, “An Optimal Fuzzy PID Controller Design Based on Conventional PID Control and Nonlinear Factors,” Applied Sciences, vol. 9, no. 6, 2019, doi: 10.3390/app9061224.

K. Yan and H. Mo, “Application of fuzzy control under time-varying universe in unmanned vehicles,” 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 439-444, 2018, doi: 10.1109/YAC.2018.8406414.

A. Al-Gizi, A. Craciunescu and S. Al-Chlaihawi, “Improving the performance of PV system using genetically-tuned FLC based MPPT,” 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), pp. 642-647, 2017, doi: 10.1109/OPTIM.2017.7975041.

S. Bari, S. S. Zehra Hamdani, H. U. Khan, M. u. Rehman and H. Khan, “Artificial Neural Network Based Self-Tuned PID Controller for Flight Control of Quadcopter,” 2019 International Conference on Engineering and Emerging Technologies (ICEET), pp. 1-5, 2019, doi: 10.1109/CEET1.2019.8711864.

R. Kumar, S. Srivastava and J. R. P. Gupta, “Artificial Neural Network based PID controller for online control of dynamical systems,” 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), pp. 1-6, 2016, doi: 10.1109/ICPEICES.2016.7853092.

M. P. Subeekrishna and K. Aseem, “Comparative study of PID and fractional order PID controllers for industrial applications,” In International Journal of Engineering Research and Technology (IJERT), vol. 7, no. 1, 2019.

M. Maryam, M. Haghparast, and F. Nasiri, “Air Condition’s PID Controller Fine-Tuning Using Artificial Neural Networks and Genetic Algorithms,” Computers, vol. 7, no. 2, 2018, doi: 10.3390/computers7020032.

R. H. Alvaro, L. G. G. -Valdovinos, T. S. -Jimenez, A. G. -Espinosa, and F. F. -Navarro, “Neural Network-Based Self-Tuning PID Control for Underwater Vehicles,” Sensors, vol. 16, no. 9, 2016, doi: 10.3390/s16091429.

Z. M. Yusoff, Z. Muhammad, A. F. Z. Abidin, M. A. A. Aziz, N. Ismail, and M. H. F. Rahiman, “Self-tuning fuzzy PID controller using online method in essential oil extraction process,” Proceedings of the 6th International Conference on Computing and Informatics, ICOCI 2017, 25-27 April 2017.

C. C. -Tang, N. Sutarna, J. -S. Chiou, and C. -J. Wang, “Equivalence between Fuzzy PID Controllers and Conventional PID Controllers,” Applied Sciences, vol. 7, no. 6, 2017, https://doi:10.3390/app7060513.

A. Y. Al-Maliki and K. Iqbal, “FLC-based PID controller tuning for sensorless speed control of DC motor,” 2018 IEEE International Conference on Industrial Technology (ICIT), pp. 169-174, 2018, doi: 10.1109/ICIT.2018.8352171.

D. Pelusi, R. Mascella, L. Tallini, J. Nayak, B. Naik, and A. Abraham, “Neural network and fuzzy system for the tuning of Gravitational Search Algorithm parameters,” Expert Systems with Applications, vol. 102, pp. 234-244, 2018, doi: 10.1016/j.eswa.2018.02.026.

S. A. Hamoodi, I. I. Sheet and R. A. Mohammed, “A Comparison between PID controller and ANN controller for speed control of DC Motor,” 2019 2nd International Conference on Electrical, Communication, Computer, Power and Control Engineering (ICECCPCE), pp. 221-224, 2019, doi: 10.1109/ICECCPCE46549.2019.203777.

K. Sharma and D. K. Palwalia, “A modified PID control with adaptive fuzzy controller applied to DC motor,” 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC), pp. 1-6, 2017, doi: 10.1109/ICOMICON.2017.8279151.

D. Babunski, J. Berisha, E. Zaev and X. Bajrami, “Application of Fuzzy Logic and PID Controller for Mobile Robot Navigation,” 2020 9th Mediterranean Conference on Embedded Computing (MECO), pp. 1- 4, 2020, doi: 10.1109/MECO49872.2020.9134317.

M. A. Khan, P. Anand and G. Bhuvaneswari, “Artificial Neural Network based controller design for SMPS,” 2019 3rd International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE), pp. 253-259, 2019, doi: 10.1109/RDCAPE47089.2019.8979104.

Z. Guan and T. Yamamoto, “Design of a Reinforcement Learning PID controller,” 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1-6, 2020, doi: 10.1109/IJCNN48605.2020.9207641.

V. Vagisha, S. Swati, S. Das, S. K. Mishra and S. S. Sahu, “A Review on Intelligent PID Controllers in Autonomous Vehicle,” Advances in Smart Grid Automation and Industry 4.0, vol. 693, 2021, doi: 10.1007/978- 981-15-7675-1 39.

G. V. Batista, C. T. Scarpin, J. E. Pecora, and A. Ruiz, “A New Ant ´ Colony Optimization Algorithm to Solve the Periodic Capacitated Arc Routing Problem with Continuous Moves,” Mathematical Problems in Engineering, vol. 2019, pp. 1-12, 2019, doi: 10.1155/2019/3201656.

Z. Shen, J. Zhou, J. Gao and R. Song, “Fuzzy logic based PID control of a 3 DOF lower limb rehabilitation robot,” 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 818-821, 2018, doi: 10.1109/CYBER.2018.8688089.

S. Bucz and A. Kozakova, “Advanced Methods of PID Controller Tun- ˇ ing for Specified Performance,” PID Control for Industrial Processes. InTech, 2018, doi: 10.5772/intechopen.76069.

R. Sharma, P. Gaur, S. Bhatt, and D. Joshi, “Optimal fuzzy logic-based control strategy for lower limb rehabilitation exoskeleton,” Applied Soft Computing, vol. 105, p. 107226, 2021, doi: 10.1016/j.asoc.2021.107226.

G. S. Hocaoglu, N. C¸ avli, E. Kılıc¸ and Y. Danayiyen, “Nonlin- ˘ ear Convergence Factor Based Grey Wolf Optimization Algorithm and Load Frequency Control,” 2023 5th Global Power, Energy and Communication Conference (GPECOM), pp. 282-287, 2023, doi: 10.1109/GPECOM58364.2023.10175823.

S. Chatterjee and S. A. Banday, “Comparative Analysis of Different Optimization Technique Based PID Controller for Isolated Microgrid,” 2022 International Mobile and Embedded Technology Conference (MECON), pp. 325-330, 2022, doi: 10.1109/MECON53876.2022.9751929.

H. Wang, and J. Lu, “Research on Fractional Order Fuzzy PID Control of the Pneumatic-hydraulic Upper Limb Rehabilitation Training System Based on PSO,” International Journal of Control, Automation and Systems, vol. 20, pp. 310–320, 2022, doi: 10.1007/s12555-020-0847-1.

H. Housny, E. A. Chater and H. E. Fadil, “Fuzzy PID Control Tuning Design Using Particle Swarm Optimization Algorithm for a Quadrotor,” 2019 5th International Conference on Optimization and Applications (ICOA), pp. 1-6, 2019, doi: 10.1109/ICOA.2019.8727702.

D. H. Kusuma, M. Ali and N. Sutantra, “The comparison of optimization for active steering control on vehicle using PID controller based on artificial intelligence techniques,” 2016 International Seminar on Application for Technology of Information and Communication (ISemantic), pp. 18- 22, 2016, doi: 10.1109/ISEMANTIC.2016.7873803.

X. Lu, X. Zhang, S. Jia and J. Shan, “Design of Quadrotor Hovering Controller Based on Improved Particle Swarm Optimization,” 2017 10th International Symposium on Computational Intelligence and Design (ISCID), pp. 414-417, 2017, doi: 10.1109/ISCID.2017.196.

J. Seekuka, R. Rattanawaorahirunkul, S. Sansri, S. Sangsuriyan and A. Prakonsant, “AGC using Particle Swarm Optimization based PID controller design for two area power system,” 2016 International Computer Science and Engineering Conference (ICSEC), pp. 1-4, 2016, doi: 10.1109/ICSEC.2016.7859951.

D. K. Lal, A. K. Barisal, and M. Tripathy, “Grey Wolf Optimizer Algorithm Based Fuzzy PID Controller for AGC of Multi-area Power System with TCPS,” Procedia Computer Science, vol. 92, pp. 99-105, 2016, doi: 10.1016/j.procs.2016.07.329.

N. C. Patel, M. K. Debnath, D. P. Bagarty, and P. Das, “GWO tuned multi degree of freedom PID controller for load frequency control,” International Journal of Engineering and Technology, vol. 7, no. 2, pp. 548-552, 2018, doi: 10.14419/ijet.v7i2.33.14831.

R. k. Kuri, D. Paliwal and D. K. Sambariya, “Grey Wolf Optimization Algorithm based PID controller design for AVR Power system,” 2019 2nd International Conference on Power Energy, Environment and Intelligent Control (PEEIC), pp. 233-237, 2019, doi: 10.1109/PEEIC47157.2019.8976641.

N. Divya, and A. Nirmalkumar, “A survey on tuning of PID controller for industrial process using soft computing techniques,” International Journal Pure and Applied Mathematics, vol. 118, no. 11, pp. 663-667, 2018, doi: 10.12732/ijpam.v118i11.85.

A. -S. A. Younis, A. M. Moustafa and M. Moness, “Experimental Benchmarking of PID Empirical and Heuristic Tuning for Networked Control of Double-tank System,” 2019 15th International Computer Engineering Conference (ICENCO), pp. 162-167, 2019, doi: 10.1109/ICENCO48310.2019.9027382.

S. Yahya, A. R. Al Tahtawi, K. Wijayanto and B. A. Faizah, “Liquid Flow Control Design Based on PID-Fuzzy Controller with anti-Windup Compensator,” 2020 7th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), pp. 7-12, 2020, doi: 10.1109/ICITACEE50144.2020.9239237.

M. J. Blondin, and P. M. Pardalos, “A holistic optimization approach for inverted cart-pendulum control tuning,” Soft Computing, vol. 24, no. 6, pp. 4343–4359, 2020, doi: 10.1007/s00500-019-04198-7.

G. Chen, Z. Li, Z. Zhang and S. Li, “An Improved ACO Algorithm Optimized Fuzzy PID Controller for Load Frequency Control in Multi Area Interconnected Power Systems,” in IEEE Access, vol. 8, pp. 6429- 6447, 2020, doi: 10.1109/ACCESS.2019.2960380.

S. S. Choong, L. P. Wong, and C. P. Lim, “A dynamic fuzzy-based dance mechanism for the bee colony optimization algorithm,” Computing Intelligence, vol. 34, no. 4, pp. 999–1024, 2018, doi: 10.1111/coin.12159.

E. M. El-Gendy, M. M. Saafan, M. S. Elksas, S. F. Saraya, and F. F. G. Areed, “Applying hybrid genetic–PSO technique for tuning an adaptive PID controller used in a chemical process,” Soft Computing, vol. 24, no. 5, pp. 3455–3474, 2020, doi: 10.1007/s00500-019-04106-z.

P. Dutta and S. K. Nayak, “Grey wolf optimizer based PID controller for speed control of BLDC motor,” Journal of Electrical Engineering and Technology, vol. 16, pp. 955–961, 2021, doi: 10.1007/s42835-021- 00660-5.

K. Anbumani, R. Ranihemamalini and G. Pechinathan, “GWO based tuning of PID controller for a heat exchanger process,” 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS), pp. 417-421, 2017, doi: 10.1109/SSPS.2017.8071631.

H. Zhang, W. Assawinchaichote and Y. Shi, “New PID Parameter Autotuning for Nonlinear Systems Based on a Modified Monkey–Multiagent DRL Algorithm,” in IEEE Access, vol. 9, pp. 78799-78811, 2021, doi: 10.1109/ACCESS.2021.3083705.

H. Wang, Y. Luo, W. An, Q. Sun, J. Xu and L. Zhang, “PID ControllerBased Stochastic Optimization Acceleration for Deep Neural Networks,” in IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 12, pp. 5079-5091, 2020, doi: 10.1109/TNNLS.2019.2963066.

X. Chen, F. Li, H. He, and M. Wu, “Optimization of PID parameter tuning for gravity stabilized platform based on improved differential evolutionary algorithm,” Journal of Physics: Conference Series 2029, vol. 2019, 2021. doi: 10.1088/1742-6596/2029/1/012107.

H. Liu, L. Gao, X. Kong and S. Zheng, “An improved artificial bee colony algorithm,” 2013 25th Chinese Control and Decision Conference (CCDC), pp. 401-404, 2013, doi: 10.1109/CCDC.2013.6560956.

E. R. Fernandez Cornejo, R. C. Diaz and W. I. Alama, “PID Tuning based on Classical and Meta-heuristic Algorithms: A Performance Comparison,” 2020 IEEE Engineering International Research Conference (EIRCON), pp. 1-4, 2020, doi: 10.1109/EIRCON51178.2020.9253750.

A. A. Kesarkar, N. Selvaganesan, “Tuning of optimal fractional-order PID controller using an artificial bee colony algorithm,” Journal of Systems Science and Control Engineering, vol. 3, no. 1, pp. 99-105, 2015, doi: 10.1080/21642583.2014.987480.

W. Liao, Y. Hu and H. Wang, “Optimization of PID control for DC motor based on artificial bee colony algorithm,” Proceedings of the 2014 International Conference on Advanced Mechatronic Systems, pp. 23-27, 2014, doi: 10.1109/ICAMechS.2014.6911617.

N. Elkhateeb and R. Badr, “A novel variable population size artificial bee colony algorithm with convergence analysis for optimal parameter tuning,” International Journal of Computational Intelligence and Applications, vol. 16, no. 3, pp. 1750018, Sep. 2017, doi: 10.1142/S1469026817500183.

N. A. Elkhateeb, and R. I. Badr, “Novel PID tracking controller for 2DOF robotic manipulator system based on artificial bee colony algorithm,” Electrical, Control and Communication Engineering, vol. 13, no. 1, pp. 55–62, 2017, doi: 10.1515/ecce-2017-0008. [83]

Ghassan A. Sultan, Muhammed K. Jarjes, “Optimal PID controller design using artificial bee colony algorithm for robot arm,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 21, no. 1, pp. 84-91, 2021, doi: 10.11591/ijeecs.v21.i1.pp84-91.

K. Rajasekhar, K Raja Naguru Babu, “Firefly Optimization algorithm based PID controller tuning in paper machine,” International Journal of Creative Research Thoughts (IJCRT), vol. 9, no. 12, 2021.

E. S. Rahayu, A. Ma’arif, and A. Cakan, “Particle Swarm Optimization (PSO) Tuning of PID Control on DC Motor,” International Journal of Robotics and Control Systems (IJRCS), vol. 2, no. 2, pp. 435– 447, 2022, doi: 10.31763/ijrcs.v2i2.476.

M. Kishnani, S. Pareek and R. Gupta, “Optimal tuning of DC motor via simulated annealing,” 2014 International Conference on Advances in Engineering & Technology Research, pp. 1-5, 2014, doi: 10.1109/ICAETR.2014.7012928.

J. Liu, W. Pan, R. Qu, and M. Xu, “Research on the Application of PID Control with Neural Network and Parameter Adjustment Method of PID Controller,” In Association for Computing Machinery, 2018, doi: 10.1145/3297156.3297167.

M. Li and X. Feng, “Research on PID parameter tuning based on improved artificial bee colony algorithm,” Journal of Physics: Conference Series, IOP Publishing, vol. 1670, 2020, doi: 10.1088/1742- 6596/1670/1/012017.

Z. Bingula, and O. Karahan, “A novel performance criterion approach to optimum design of PID controller using cuckoo search algorithm for AVR system,” The Franklin Institute, vol. 355, no. 13, pp. 5534–5559, 2018, doi: 10.1016/j.jfranklin.2018.05.056.

A. Mamadapur and G. Unde Mahadev, “Speed Control of BLDC Motor Using Neural Network Controller and PID Controller,” 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC), pp. 146-151, 2019, doi: 10.1109/ICPEDC47771.2019.9036695.

D. Vivek, Dr. P. B. Kumar, “PID controller design with cuckoo search algorithm for stable and unstable SOPDT processes,” IOP Conference Series: Materials Science and Engineering, 2021, doi: 10.1088/1757- 899X/1091/1/012059.

X. L. Zhang and Q. Zhang, “Optimization of PID Parameters Based on Ant Colony Algorithm,” in 2021 International Conference on Intelligent Transportation, Big Data and Smart City (ICITBS), pp. 850-853, 2021, doi: 10.1109/ICITBS53129.2021.00211.

Z. W. Geem, J. H. Kim, and G. V. Loganathan, “A New Heuristic Optimization Algorithm: Harmony Search,” SIMULATION, vol. 76, no. 2, pp. 60-68, 2001, doi:10.1177/003754970107600201.

S. Pramanik, A. Sengupta and N. Roy, “PID Flow-Level Control Tuned by Genetic Algorithm and Harmony Search Algorithm,” 2021 IEEE Second International Conference on Control, Measurement and Instrumentation (CMI), pp. 172-177, 2021, doi: 10.1109/CMI50323.2021.9362959.

X. Z. Gao, V. Govindasamy, H. Xu, X. Wang, and K. Zenger, “Harmony Search Method: Theory and Applications”, Computational Intelligence and Neuroscience, vol. 2015, pp. 1–10, 2015, doi: 10.1155/2015/258491.

I. A. Abdul Jamil and M. Moghavvemi, “Optimization of PID Controller Tuning method using Evolutionary Algorithms,” 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), pp. 1-7, 2021, doi: 10.1109/i-PACT52855.2021.9696875.

A. E. H. Saad, Z. Dong, and M. Karimi, “A Comparative Study on Recently-Introduced Nature-Based Global Optimization Methods in Complex Mechanical System Design,” Algorithms, vol. 10, no. 4, 2017, doi:10.3390/a10040120.

A. E. Kayabekir, G. Bekdas¸, S. M. Nigdeli, and Z. W. Geem, “Optimum design of PID controlled active tuned mass damper via modified harmony search,” Applied Sciences, vol. 10, no. 8, p. 2976, 2020, doi: 10.3390/app10082976.

M. Gheisarnejad, “An effective hybrid harmony search and cuckoo optimization algorithm based fuzzy PID controller for load frequency control,” Applied Soft Computing, vol. 65, pp. 121-138, 2018, doi: 10.1016/j.asoc.2018.01.007.

Vijendra Kumar, S. M. Yadav, “A state-of-the-art review of heuristic and metaheuristic optimization techniques for the management of water resources,” Water Supply, vol. 22, no. 4, pp. 3702–3728, 2022, doi: 10.2166/ws.2022.010.

C. Dumitrescu, P. Ciotirnae, C. Vizitiu, “Fuzzy Logic for Intelligent Control System Using Soft Computing Applications,” Sensors, vol. 21, no. 8, p. 2617, 2021, doi: 10.3390/s21082617.

R. G. Rakshasmare, G. A. Kamble, R. H. Chile. “Some Tuning Methods of PID Controller For Different Processes,” in International Conference on Information Engineering, Management and Security, pp. 282-288, 2015.

Z. Wang, C. Qin, B. Wan, and W. W. Song “A Comparative Study of Common Nature-Inspired Algorithms for Continuous Function Optimization,” Entropy, vol. 23, no. 7, p. 874, 2021, doi: 10.3390/e23070874.

K. Jagatheesan, B. Anand, S. Samanta, N. Dey, A. S. Ashour and V. E. Balas, “Design of a proportional-integral-derivative controller for an automatic generation control of multi-area power thermal systems using firefly algorithm,” in IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 2, pp. 503-515, 2019, doi: 10.1109/JAS.2017.7510436.

S. Ladjouzi, and S. Grouni, “PID controller parameters adjustment using a single memory neuron,” Journal of the Franklin Institute, vol. 357, no. 9, pp. 5143-5172, 2020, doi: 10.1016/j.jfranklin.2020.02.027.

A. Gupta, and P. K. Padhy, “Modified Firefly Algorithm based controller design for integrating and unstable delay processes,” Engineering Science and Technology, an International Journal, vol. 19, no. 1, pp. 548-558, 2016, doi: 10.1016/j.jestch.2015.09.015.

M. R. K. Shagor, A. J. Mahmud, M. M. Nishat, F. Faisal, M. H. Mithun and M. A. Khan, “Firefly Algorithm Based Optimized PID Controller for Stability Analysis of DC-DC SEPIC Converter,” 2021 IEEE 12th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), pp. 0957-0963, 2021, doi: 10.1109/UEMCON53757.2021.9666555.

R. Bansal, M. Jain and B. Bhushan, “Designing of Multi-objective Simulated Annealing Algorithm tuned PID controller for a temperature control system,” 2014 6th IEEE Power India International Conference (PIICON), pp. 1-6, 2014, doi: 10.1109/POWERI.2014.7117716.

L. Gou, W. Shao, X. Zeng, Y. Shen and Z. Zhou, “Rapid Simulated Annealing Algorithm for optimization of Aeroengine Control Based on BP Neural Network,” in 2019 Chinese Control Conference (CCC), pp. 8848-8852, 2019, doi: 10.23919/ChiCC.2019.8866588.

M. Shatnawi and E. Bayoumi, “Brushless DC Motor Controller Optimization Using Simulated Annealing,” 2019 International Conference on Electrical Drives & Power Electronics (EDPE), pp. 292-297, 2019, doi: 10.1109/EDPE.2019.8883924.

A. Surana and B. Bhushan, “Design and Comparison of PSO, SA and GA tuned PID Controller for Ball Balancer Arrangement,” 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT), pp. 1-5, 2021, doi: 10.1109/ICECCT52121.2021.9616686.

X. Lv, Z. Zhang, Y. Chen, J. Zhang, Q. Yue and W. Zhang, “A Fractional Order Control Method of Electromechanical Actuator Based on PSOSA Optimization,” 2022 34th Chinese Control and Decision Conference (CCDC), pp. 103-108, 2022, doi: 10.1109/CCDC55256.2022.10034160.

S. K. Valluru, K. Sehgal and H. Thareja, “Evaluation of Moth-Flame Optimization, Genetic and Simulated Annealing tuned PID controller for Steering Control of Autonomous Underwater Vehicle,” 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), pp. 1-6, 2021, doi: 10.1109/IEMTRONICS52119.2021.9422632.

K. S. M. Jagindar Singh, I. Elamvazuthi, K. Z. K. Shaari and F. V. Lima, “PID tuning control strategy using Cuckoo search algorithm for pressure plant,” 2016 6th International Conference on Intelligent and Advanced Systems (ICIAS), 2016, pp. 1-6, 2016, doi: 10.1109/ICIAS.2016.7824127.

K. S. M. J. Singh, I. Elamvazuthi, K. Z. K. Shaari and F. V. Lima, “PID tuning control strategy using Cuckoo Search algorithm,” 2015 IEEE Student Conference on Research and Development (SCOReD), pp. 129-133, 2015, doi: 10.1109/SCORED.2015.7449309.

T. Adel, S. Hichem and C. Abdelkader, “Cuckoo Search Algorithm and TS Fuzzy Models for PID Control,” 2019 International Conference on Signal, Control and Communication (SCC), pp. 331-336, 2019, doi: 10.1109/SCC47175.2019.9116153.

Holland J.H., Adaptation in Natural and Artificial Systems, University of Michigan Press: Ann Arbor, MI, USA, 1975.

K. K. Nimisha and R. Senthilkumar, “A Survey On Optimal Tuning Of PID Controller For Buck-Boost converter Using Cuckoo-Search Algorithm,” 2018 International Conference on Control, Power, Communication and Computing Technologies (ICCPCCT), pp. 216-221, 2018. doi: 10.1109/ICCPCCT.2018.8574321.

K. Zawirski, K. Nowopolski and P. Siwek, “Application of Cuckoo Search Algorithm for Speed Control Optimization in Two-Sided Electrical Drive,” 2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC), pp. 651-656, 2018, doi: 10.1109/EPEPEMC.2018.8522006.

M. Kumar and K. Chaursiya, “Position control of brushless DC motor using harmony search algorithm optimization technique,” 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), pp. 754-757, 2017, doi: 10.1109/ICECA.2017.8203644.

B. Hekimoglu, “Optimal Tuning of Fractional Order PID Controller ˘ for DC Motor Speed Control via Chaotic Atom Search Optimization Algorithm,” in IEEE Access, vol. 7, pp. 38100-38114, 2019, doi: 10.1109/ACCESS.2019.2905961.

L. Caiza, D. S. Ben´ıtez and O. Camacho, “Non-linear PID Controller Optimization using the Artificial Bee Colony Algorithm Applied to a Small-Scale Pasteurization Plant,” 2022 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), pp. 1-6, 2022, doi: 10.1109/ROPEC55836.2022.10018648.

A. Kumar and V. Kumar, “Artificial bee colony based design of the interval type-2 fuzzy PID controller for robot manipulator,” TENCON 2017 - 2017 IEEE Region 10 Conference, pp. 602-607, 2017, doi: 10.1109/TENCON.2017.8227933.

A. K. Mishra, V. K. Tiwari, R. Kumar and T. Verma, “Speed control of dc motor using artificial bee colony optimization technique,” 2013 International Conference on Control, Automation, Robotics and Embedded Systems (CARE), pp. 1-6, 2013, doi: 10.1109/CARE.2013.6733772.

M. Li and X. Feng, “Application of Improved Artificial Bee Colony Algorithm in constant pressure water supply system,” 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), pp. 521-525, 2020, doi: 10.1109/CACRE50138.2020.9230243.

F. Majid, M. Mostafa, A. Hassan and E. K. Abdeljalil, “Differential Evolution Approach for Identification and Control of Stable and Unstable Systems,” 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT), pp. 218-223, 2022, doi: 10.1109/CoDIT55151.2022.9804077.

P. Sanchez-Sanchez, J. G. Cebada-Reyes, A. Ruiz-Garcia, A. MontielMart´ınez and F. Reyes-Cortes, “Differential Evolution Algorithms Comparison Used to Tune a Visual Control Law,” in IEEE Access, vol. 10, pp. 46028-46042, 2022, doi: 10.1109/ACCESS.2022.3168965.

J. Zhang, P. Wu, X. Wang, X. Yu and S. Duan, “PID Parameter Tuning of Combined Heat and Power Generation Unit Based on Differential Evolution Algorithm,” 2022 7th International Conference on Power and Renewable Energy (ICPRE), pp. 1186-1190, 2022, doi: 10.1109/ICPRE55555.2022.9960306.

S. Prainetr, T. Phurahong, K. Janprom and N. Prainetr, “Design Tuning PID Controller For Temperature Control Using Ant Colony Optimization,” 2019 IEEE 2nd International Conference on Power and Energy Applications (ICPEA), pp. 124-127, 2019, doi: 10.1109/ICPEA.2019.8818517.

M. J. Blondin and P. Sicard, “Statistical convergence analysis of ACO — NM for PID controller tuning,” 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 487-492, 2015, doi: 10.1109/ICIT.2015.7125146.

M. Sreejeth, R. Kumar, N. Tripathi and P. Garg, “Tuning A PID Controller using Metaheuristic Algorithms,” 2023 8th International Conference on Communication and Electronics Systems (ICCES), pp. 276-282, 2023, doi: 10.1109/ICCES57224.2023.10192687.

D. Sandoval, I. Soto and P. Adasme, “Control of direct current motor using Ant Colony optimization,” 2015 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), pp. 79-82, 2015, doi: 10.1109/Chilecon.2015.7400356.

B. A. Kouassi, Y. Zhang, S. Ouattara and M. J. Mbyamm Kiki, “PID Tuning Of Chopper Fed Speed Control Of DC Motor Based On Ant Colony Optimization Algorithm,” 2019 IEEE 3rd International Electrical and Energy Conference (CIEEC), pp. 407-412, 2019, doi: 10.1109/CIEEC47146.2019.CIEEC-2019179.

R. Singh, A. Kumar and R. Sharma, “Fractional Order PID Control using Ant Colony Optimization,” 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), pp. 1-6, 2016, doi: 10.1109/ICPEICES.2016.7853387.

Y. Pei, W. Wang and S. Zhang, “Basic Ant Colony Optimization,” 2012 International Conference on Computer Science and Electronics Engineering, pp. 665-667, 2012, doi: 10.1109/ICCSEE.2012.178.

C. S. Rajan and M. Ebenezer, “Grey Wolf Optimizer Algorithm for Performance Improvement and Cost Optimization in Microgrids,” 2022 6th International Conference on Green Energy and Applications (ICGEA), pp. 115-121, 2022, doi: 10.1109/ICGEA54406.2022.9791902.

A. H. Khan, Z. Shao, S. Li, Q. Wang, and N. Guan, “Which is the Best PID Variant for Pneumatic Soft Robots? An Experimental Study,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 451-460, 2020, doi: 10.1109/JAS.2020.1003045.

W. Long, J. Jiao, X. Liang, S. Cai and M. Xu, “A Random OppositionBased Learning Grey Wolf Optimizer,” in IEEE Access, vol. 7, pp. 113810-113825, 2019. doi: 10.1109/ACCESS.2019.2934994.

P. Ouyang, and V. Pano, “Comparative Study of DE, PSO and GA for Position Domain PID Controller Tuning,” Algorithms, vol. 8, no. 3, pp. 697-711, 2015, doi: 10.3390/a8030697.

J. A. Abdulsaheb, and D. J. Kadhim, “Classical and Heuristic Approaches for Mobile Robot Path Planning: A Survey,” Robotics, vol. 12, no. 4, p. 93, 2023, doi: 10.3390/robotics12040093.

P. Warrier, and P. Shah, “Optimal Fractional PID Controller for Buck Converter Using Cohort Intelligent Algorithm,” Applied System Innovation, vol. 4, no. 3, 2021, doi: 10.3390/asi4030050.

H. Khan, S. Khatoon, P. Gaur, M. Abbas, C. A. Saleel, and S. A. Khan, “Speed Control of Wheeled Mobile Robot by Nature-Inspired Social Spider Algorithm-Based PID Controller,” Processes, vol. 11, no. 4, pp. 1202, 2023, doi: 10.3390/pr11041202. [

A. Ahmed, G. Parmar and R. Gupta, “Application of GWO in Design of Fractional Order PID Controller for Control of DC Motor and Robustness Analysis,” 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), pp. 646-651, 2018, doi: 10.1109/ICACCCN.2018.8748548.

V. Yadav, G. Parmar and R. Bhatt, “Robustness Analysis with Perturbation for Control System with GWO,” 2019 4th International Conference on Information Systems and Computer Networks (ISCON), pp. 812-815, 2019, doi: 10.1109/ISCON47742.2019.9036254.

Z. Liang, L. Fu, X. Li, Z. Feng, J. W. Sleigh and H. K. Lam, “Ant Colony Optimization PID Control of Hypnosis With Propofol Using Renyi Permutation Entropy as Controlled Variable,” in IEEE Access, vol. 7, pp. 97689-97703, 2019, doi: 10.1109/ACCESS.2019.2927321.

S. Gupta et al., “Metaheuristic Optimization Techniques Used in Controlling of an Active Magnetic Bearing System for High-Speed Machining Application,” in IEEE Access, vol. 11, pp. 12100-12118, 2023, doi: 10.1109/ACCESS.2023.3241854. [

H. Sarma and A. Bardalai, “Tuning of PID Controller using Driving Training-Based Optimization for Speed Control of DC Motor,” 2023 4th International Conference on Computing and Communication Systems (I3CS), pp. 1-8, 2023, doi: 10.1109/I3CS58314.2023.10127458.

A. K. Bhullar, R. Kaur and S. Sondhi, “Design And Comparative Analysis Of Optimized Fopid Controller Using Neural Network Algorithm,” 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS), pp. 91-96, 2020, doi: 10.1109/ICIIS51140.2020.9342743.

V. P. Meena, U. K. Yadav, A. Gupta and V. P. Singh, “ReducedOrder Model Based Design of PID Control for Zeta Converter Using GWO Algorithm,” 2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1-5, 2022, doi: 10.1109/PEDES56012.2022.10080587.

S. Yousaf, A. Mughees, M. G. Khan, A. A. Amin and M. Adnan, “A Comparative Analysis of Various Controller Techniques for Optimal Control of Smart Nano-Grid Using GA and PSO Algorithms,” In IEEE Access, vol. 8, pp. 205696-205711, 2020, doi: 10.1109/ACCESS.2020.3038021.

J. Tang, G. Liu and Q. Pan, “A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends,” in IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 10, pp. 1627-1643, 2021, doi: 10.1109/JAS.2021.1004129.

M. S. Ayas and E. Sahin, “Parameter effect analysis of particle swarm optimization algorithm in PID controller design,” An International Journal of Optimization and Control: Theories and Applications, vol. 9 no. 2, 2019, doi: 10.11121/ijocta.01.2019.00659.

S. Harshitha, S. Shamanth, and A. K. Chari, “A Review of Various Controller Techniques Designed for the Operational Control of DC and Servo Motors,” Journal of Physics, vol. 2273, 2022, doi: 10.1088/1742- 6596/2273/1/012001.

P. Deulkar and S. Hanwate, “Analysis of PSO-PID controller for CSTR temperature control,” 2020 IEEE First International Conference on Smart Technologies for Power, Energy, and Control (STPEC), pp. 1-6, 2020, doi: 10.1109/STPEC49749.2020.9297750.

S. Xianghan, N. Liu, R. Shen, K. Wang, Z. Zhao, and X. Sheng, “Nonlinear PID Controller Parameters Optimization Using Improved Particle Swarm Optimization Algorithm for the CNC System,” Applied Sciences, vol. 12, no. 20, pp. 10269, 2022, doi: 10.3390/app122010269.

A. G. Gad, “Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review,” Arch Computat Methods Eng, vol. 29, pp. 2531–2561, 2022, doi: 10.1007/s11831-021-09694-4.

M. Z. Efendi, F. D. Murdianto and H. N. Baweani, “Robustness Analysis of PID-Cuckoo Search Algorithm to Voltage Control in Three Phase of Synchronous Generator with Dynamic Load Condition,” 2018 International Electronics Symposium on Engineering Technology and Applications (IES-ETA), pp. 133-138, 2018, doi: 10.1109/ELECSYM.2018.8615486.

R. S. Barbosa, I. S. Jesus, “Special Issue on Algorithms for PID Controllers 2021,” Algorithms, vol. 16, no. 1, 2023, doi: 10.3390/a16010035.

A. Zulu, “Towards explicit PID control tuning using machine learning,” 2017 IEEE AFRICON, pp. 430-433, 2017, doi: 10.1109/AFRCON.2017.8095520.

J. H. Lanker, R. Bhushan and N. Gupta, “Load Frequency Control of Multi Area Power System Using Meta-heuristic/Artificial Intelligence Techniques,” 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP), pp. 1-6, 2022, doi: 10.1109/ICICCSP53532.2022.9862473.

T. Wang, H. Wang, H. Hu, X. Lu, and S. Zhao, “An adaptive fuzzy PID controller for speed control of brushless direct current motor,” SN Applied Sciences, vol. 4, no. 71, 2022, doi: 10.1007/s42452-022-04957- 6.

Dr. T. R. Rangaswamy, Dr. S. P. Vijayaragavan, “Efficient Drum Level Control for Steam,” International Journal of Pure and Applied Mathematics, vol. 119, no. 12, pp. 429-434, 2018.

M. Shehab, M. A. A. Hashem, M. K. Y. Shambour, “A Comprehensive Review of Bat Inspired Algorithm: Variants, Applications, and Hybridization,” Archives of Computational Methods in Engineering, vol. 30, pp. 765–797, 2023, doi: 10.1007/s11831-022-09817-5.




DOI: https://doi.org/10.18196/jrc.v5i2.20850

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ramakant S Patil, Sharad P. Jadhav, Machhindranath D. Patil

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik