Modeling and Control of an 8-Legged Stewart Platform Using Null-Space Control for Precise Motion Under Actuator Constraints

Authors

  • Indrazno Siradjuddin State Polytechnic of Malang https://orcid.org/0000-0001-8706-3570
  • Ida Lailatul Fitria State Polytechnic of Malang
  • Gillang Al Azhar State Polytechnic of Malang
  • Septyana Riskitasari State Polytechnic of Malang
  • Ferdian Ronilaya State Polytechnic of Malang
  • Rendi Pambudi Wicaksono State Polytechnic of Madiun

DOI:

https://doi.org/10.18196/jrc.v6i4.25920

Keywords:

Stewart Platform, Null-Space Control, Redundancy Resolution, PID Control, Actuator Constraintsl, Lyapunov Stability, Simulation-Based Validation

Abstract

This paper investigates the modeling, control, and redundancy resolution of an 8-legged Stewart platform, emphasizing the use of null-space control to achieve precise trajectory tracking while adhering to actuator constraints. The proposed control framework combines a Proportional-Integral-Derivative (PID) controller with null-space projection to exploit the platform’s inherent redundancy for secondary objectives, such as singularity avoidance, energy optimization, and enhanced fault tolerance. A clamping strategy ensures that actuator lengths remain within operational limits, thereby preventing mechanical failures. Simulation results demonstrate significant error reduction in both position and orientation, even under strict actuator constraints. Specifically, the system achieved exponential convergence to the desired pose within 3 s, with a maximum position error of less than 1 × 10−3 m and orientation error below 5 × 10−4 rad. Actuator efficiency was also enhanced, as the algorithm dynamically redistributed efforts among actuators to avoid overloading any single leg. While energy consumption was not explicitly optimized in this study, the framework provides a foundation for future work in minimizing energy usage through advanced secondary objectives. Stability is analyzed rigorously using Lyapunov’s direct method. Compared to traditional six-legged platforms, the 8- legged design offers superior flexibility and adaptability, making it particularly suitable for applications in flight simulators, robotic surgery, and industrial automation where precision and reliability are critical. However, the proposed approach has certain limitations. For instance, the current implementation assumes ideal actuator dynamics and does not account for uncertainties such as friction, backlash, or external disturbances. Additionally, the clamping strategy may introduce computational overhead, potentially impacting real-time performance in highly dynamic scenarios. Future research could address these limitations by incorporating adaptive or robust control techniques and optimizing computational efficiency. This work advances the design and control of redundant parallel manipulators, offering practical insights into dealing with physical limitations and providing a foundation for future innovations in high-performance motion control systems.

References

M. Taghizadeh and M. Javad Yarmohammadi, “Development of a Selftuning PID Controller on Hydraulically Actuated Stewart Platform Stabilizer with Base Excitation,” International Journal of Control, Automation and Systems, vol. 16, no. 6, pp. 2990–2999, 2018, doi: 10.1007/s12555-016-0559-8.

K. Liu, J. M. Fitzgerald and F. L. Lewis, “Kinematic analysis of a Stewart platform manipulator,” in IEEE Transactions on Industrial Electronics, vol. 40, no. 2, pp. 282-293, 1993, doi: 10.1109/41.222651.

G. Lebret, F. L. Lewis, and K. Liu, “Dynamic analysis and control of a stewart platform manipulator,” Journal of Robotic Systems, vol. 10, no. 5, pp. 629–655, 1993, doi: 10.1002/rob.4620100506.

H. Zhuang and Z. S. Roth, “Method for kinematic calibration of stewart platforms,” Journal of Robotic Systems, vol. 10, no. 3, pp. 391–405, 1993, doi: 10.1002/rob.4620100306.

H. Yadavari, V. T. Aghaei, and S. Ikizoglu, “Addressing challenges in dynamic modeling of stewart platform using reinforcement learning-based control approach,” Journal of Robotics and Control (JRC), vol. 5, no. 1, pp. 117–131, 2024, doi: 10.18196/jrc.v5i1.20582.

G. Zhu, S. Wei, D. Li, Y. Wang, and Q. Liao, “Conformal geometric algebra–based geometric modeling method for forward displacement analysis of 6-4 stewart platforms,” Journal of Mechanisms and Robotics, vol. 16, no. 17, 2024, doi: 10.1115/1.4063501.

Z. Sika, J. Krivo ˇ sej, and T. Vyhl ˇ ´ıdal, “Three dimensional delayed resonator of stewart platform type for entire absorption of fully spatial vibration,” Journal of Sound and Vibration, vol. 571, 2024, doi: 10.1016/j.jsv.2023.118154.

J. Lin, J. Lian, G. Zhao, H. Li, and C. Xu, “A 2-dof drag-free control ground simulation system based on stewart platform,” ISA Transactions, vol. 146, 2024.

S. Karmakar and C. J. Turner, “A literature review on stewart-gough platform calibrations,” Journal of Mechanical Design, vol. 146, 2024.

S. M. Cobian-Aquino et al., “Adaptive state restricted barrier lyapunov-based control of a stewart platform used as ankle-controlled mobilizer,” ISA Transactions, vol. 148, 2024.

Y. Wu, L. Wen and T. Tang, “Line-of-Sight Stabilization Enhancement With Hybrid Sensing in a Piezoelectric Mirror-Based Cubic Stewart Platform,” in IEEE Transactions on Aerospace and Electronic Systems, vol. 60, no. 3, pp. 2843-2853, 2024, doi: 10.1109/TAES.2024.3353713.

W. Qiu, S. Wang, A. Niu, K. Fan, G. Han, and H. Chen, “Modeling and analysis of landing collision dynamics for an active helideck based on the stewart platform,” Ocean Engineering, vol. 297, 2024, doi: 10.1016/j.oceaneng.2024.117107.

B. Luo, H. Yu, F. Feng, B. Gao, and Y. Ge, “Experimental study of active vibration control for flexible truss by using a stewart platform manipulator,” in Advances in Transdisciplinary Engineering, vol. 46, pp. 145–154, 2024, doi: 10.3233/ATDE231100.

M. H. Vu, N. P. V. Bach, T. N. Luong, and T. B. Trung, “Kinematics design and statics analysis of novel 6-dof passive vibration isolator with s-shaped legs based on stewart platform,” Journal of Vibroengineering, vol. 26, 2024, doi: 10.21595/jve.2023.23511.

D. Chen, S. Ottikkutti, and K. N. Tahmasebi, “Developing a mechatronics twin framework for effective exploration of operational behaviors of prosthetic sockets,” SN Computer Science, vol. 5, nol. 5, 2024, doi: 10.1007/s42979-023-02485_7.

W. T. Lei and C. W. Chen, “A high accuracy six-dimensional motion measuring device: Design and accuracy evaluation,” Mechanism and Machine Theory, vol. 191, 2024, doi: 10.1016/j.mechmachtheory.2023.105469.

J. C. Pennington, J. A. Gray, B. C. Sell, F. Schauer, M. D. Polanka, and A. Feleo, “Study of the performance characteristics of a micro rotating detonation engine using a stewart platform,” Aerospace Research Central, 2024, doi: 10.2514/6.2024-0812.

X. Tang, Z. Shao, and R. Yao, “Rigid-Body Dynamic Modelling and Verification of the Fine-Tuning Stewart Platform, Research and Application of Cable-Driven and Rigid Parallel Robots, pp. 107-131, 2024, doi: 10.1007/978-981-99-7452-8_6.

S. Li, S. Liu, J. Cui, L. Zhou, T. Lv, D. Zhao, L. Dong, and H. Jiao, “Co-simulation of drag reduction of placoid scale oscillation driven by micro stewart mechanism,” Physics of Fluids, vol. 36, 2024, doi: 10.1063/5.0191118.

M. A. Kalafat, H. Sevinc¸, and S. Samankan, “Design of a foldable origami-inspired 6-dof stewart mechanism,” Journal of Mechanical Science and Technology, vol. 38, pp. 1429–1438, 2024, doi: 10.1007/s12206-024-0235-5.

M. A. Mirza, S. Li, and L. Jin, “Simultaneous learning and control of parallel Stewart platforms with unknown parameters,” Neurocomputing, vol. 266, pp. 114–122, 2017, doi: 10.1016/j.neucom.2017.05.026.

M. Raghavan, “The Stewart Platform of General Geometry Has 40 Configurations,” Journal of Mechanical Design, vol. 115, no. 2, pp. 277– 282, 1993, doi: 10.1115/1.2919188.

G. J. Hamlin and A. C. Sanderson, “A novel concentric multilink spherical joint with parallel robotics applications,” Proceedings of the 1994 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1267- 1272, 1994, doi: 10.1109/ROBOT.1994.351313.

M. R. Pedersen, S. Bøgh, R. S. Andersen, O. Madsen, L. Nalpantidis, C. Schou, and V. Kruger, “Robot skills for manufacturing: From concept ¨ to industrial deployment,” Robotics and Computer-Integrated Manufacturing, vol. 37, pp. 282–291, 2016, doi: 10.1016/j.rcim.2015.04.002.

M. Hoeckelmann, T. Haidegger, I. J. Rudas, P. Fiorini, and F. Kirchner, “Current Capabilities and Development Potential in Surgical Robotics,” International Journal of Advanced Robotic Systems, vol. 12, no. 5, p. 61, 2015, doi: 10.5772/60133.

J. Sun et al., “Innovative effector design for simulation training in robotic surgery,” 2010 3rd International Conference on Biomedical Engineering and Informatics, pp. 1755-1759, 2010, doi: 10.1109/BMEI.2010.5639872.

H. -C. Huang and Y. -X. Chen, “Evolutionary Optimization of Fuzzy Reinforcement Learning and Its Application to Time-Varying Tracking Control of Industrial Parallel Robotic Manipulators,” in IEEE Transactions on Industrial Informatics, vol. 19, no. 12, pp. 11712-11720, 2023, doi: 10.1109/TII.2023.3248120.

T. Shamir, “The Singularities of Redundant Robot Arms,” The International Journal of Robotics Research, vol. 9, no. 1, pp. 113–121, 1990, doi: 10.1177/027836499000900105.

K. Liu, D. Taylor, G. Lebret, and F. Lewis, “The singularities and dynamics of a Stewart platform manipulator,” Journal of Intelligent & Robotic Systems, vol. 8, no. 3, pp. 287–308, 1993, doi: 10.1007/BF01257946.

F. C. Park and Jin Wook Kim, “Manipulability and singularity analysis of multiple robot systems: a geometric approach,” Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), vol. 2, pp. 1032-1037, 1998, doi: 10.1109/ROBOT.1998.677224.

N. Baron, A. Philippides, and N. Rojas, “A robust geometric method of singularity avoidance for kinematically redundant planar parallel robot manipulators,” Mechanism and Machine Theory, vol. 151, 2020, doi: 10.1016/j.mechmachtheory.2020.103863.

Q. Gu, L. Yin, B. Yang, W. Zheng, B. Gu, Z. Yin, J. Tian, and M. Liu, “A Novel Architecture of a Six Degrees of Freedom Parallel Platform,” Electronics, vol. 12, no. 8, 2023, doi: 10.3390/electronics12081774.

F. Yang, X. Tan, Z. Wang, Z. Lu, and T. He, “A geometric approach for real-time forward kinematics of the general stewart platform,” Sensors, vol. 22, no. 13, 2022, doi: 10.3390/s22134829.

H. Zhu, W. Xu, B. Yu, F. Ding, L. Cheng, and J. Huang, “A novel hybrid algorithm for the forward kinematics problem of 6 dof based on neural networks,” Sensors, vol. 22, no. 14, 2022, doi: 10.3390/s22145318.

N. L. Zivkovic, J. Z. Vidakovic, and M. P. Lazarevic, “Forward kinematics algorithm in dual quaternion space based on denavit-hartenberg convention,” Applied Engineering Letters, vol. 8, 2023.

M. Roudneshin, K. Ghaffari and A. G. Aghdam, “On Forward Kinematics of a 3SPR Parallel Manipulator,” in IEEE Control Systems Letters, vol. 7, pp. 425-430, 2023, doi: 10.1109/LCSYS.2022.3189314.

S. Karmakar and C. J. Turner, “Forward kinematics solution for a general stewart platform through iteration based simulation,” International Journal of Advanced Manufacturing Technology, vol. 126, pp. 813–825, 2023, doi: 10.1007/s00170-023-11130-9.

Q. Zhu and Z. Zhang, “An Efficient Numerical Method for Forward Kinematics of Parallel Robots,” in IEEE Access, vol. 7, pp. 128758- 128766, 2019, doi: 10.1109/ACCESS.2019.2940064.

J. Ma, X. Duan, and D. Zhang, “Kernel extreme learning machinebased general solution to forward kinematics of parallel robots,” CAAI Transactions on Intelligence Technology, vol. 8, no. 3, pp. 1002–1013, 2023, doi: 10.1049/cit2.12156.

C. Liu, G. Cao, and Y. Qu, “Safety analysis via forward kinematics of delta parallel robot using machine learning,” Safety Science, vol. 117, pp. 243–249, 2019, doi: 10.1016/j.ssci.2019.04.013.

J. P. Merlet, “Solving the forward kinematics of a gough-type parallel manipulator with interval analysis,” International Journal of Robotics Research, vol. 23, no. 3, 2004, doi: 10.1177/0278364904039806.

M. Moradi Dalvand, S. Nahavandi and R. D. Howe, “General Forward Kinematics for Tendon-Driven Continuum Robots,” in IEEE Access, vol. 10, pp. 60330-60340, 2022, doi: 10.1109/ACCESS.2022.3180047.

D. K. S. Chauhan and P. R. Vundavilli, “Forward kinematics of the stewart parallel manipulator using machine learning,” International Journal of Computational Methods, vol. 19, no. 8, 2022, doi: 10.1142/S0219876221420093.

J. Fu, F. Gao, Y. Pan, and H. Du, “Forward kinematics solutions of a special six-degree-of-freedom parallel manipulator with three limbs,” Advances in Mechanical Engineering, vol. 7, 2015, doi: 10.1177/1687814015582118.

J. Hu, W. Liu, J. Yi and Z. Xiong, “Forward Kinematics of Object Transporting by a Multi-Robot System With a Deformable Sheet,” in IEEE Robotics and Automation Letters, vol. 9, no. 4, pp. 3459-3466, 2024, doi: 10.1109/LRA.2024.3368232.

S. Patel, V. L. Nguyen, and R. J. Caverly, “Forward kinematics of a cable-driven parallel robot with pose estimation error covariance bounds,” Mechanism and Machine Theory, vol. 183, 2023, doi: 10.1016/j.mechmachtheory.2023.105231.

A. Ghasemi, M. Eghtesad, and M. Farid, “Neural network solution for forward kinematics problem of cable robots,” Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 60, pp. 201–215, 2010, doi: 10.1007/s10846-010-9421-z.

S. R. Rifai Ahmad Musthofa, Ema Utami, “Analisis penerapan pemodelan gerakan karakter manusia pada animasi 3d dengan menggunakan metode forward kinematics,” Respati, vol. 14, no. 3, 2019, doi: 10.35842/jtir.v14i3.311.

M. A. Makwana and H. P. Patolia, “Forward kinematics of delta manipulator by novel hybrid neural network,” International Journal of Mathematical, Engineering and Management Sciences, vol. 6, 2021, doi: 10.2139/ssrn.5210662.

I. Agustian, N. Daratha, R. Faurina, A. Suandi, and S. Sulistyaningsih, “Robot manipulator control with inverse kinematics pd-pseudoinverse jacobian and forward kinematics denavit hartenberg,” Jurnal Elektronika dan Telekomunikasi, vol. 21, 2021, doi: 10.14203/jet.v21.8-18.

M. Nahangi, J. Yeung, C. T. Haas, S. Walbridge, and J. West, “Automated assembly discrepancy feedback using 3d imaging and forward kinematics,” Automation in Construction, vol. 56, pp. 36–46, 2015, doi: 10.1016/j.autcon.2015.04.005.

M. Coh, K. H ˇ ebert-Losier, S. ´ Stuhec, V. Babi ˇ c, and M. Supej, “Kinematics ´ of usain bolt’s maximal sprint velocity,” Kinesiology, vol. 50, no. 2, 2018, doi: 10.26582/k.50.2.10.

B. Bayle, M. Renaud, and J. Y. Fourquet, “Nonholonomic mobile manipulators: Kinematics, velocities and redundancies,” Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 36, pp. 45–63, 2003, doi: 10.1023/A:1022361914123.

J. A. Marsh, M. I. Wagshol, K. J. Boddy, M. E. O’Connell, S. J. Briend, K. E. Lindley, and A. Caravan, “Effects of a six-week weightedimplement throwing program on baseball pitching velocity, kinematics, arm stress, and arm range of motion,” PeerJ, vol. 2018, pp. 692–700, 2018, doi: 10.1177/0363546516671943.

M. W. Spong, S. Hutchinson, and M. Vidyasagar, “Velocity kinematics - the manipulator jacobian,” Robot modeling and control, 2006.

J. Haviland and P. Corke, “Manipulator Differential Kinematics: Part I: Kinematics, Velocity, and Applications [Tutorial],” in IEEE Robotics & Automation Magazine, vol. 31, no. 4, pp. 149-158, 2024, doi: 10.1109/MRA.2023.3270228.

R. Carrera et al., “Occaso: Iv. radial velocities and open cluster kinematics,” Astronomy and Astrophysics, vol. 658, 2022, doi: 10.1051/0004- 6361/202141832.

G. Chen, B. Jin, and Y. Chen, “Position-posture closed-loop control of sixlegged walking robot based on inverse velocity kinematics,” Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, vol. 45, 2014.

T. Abaas, A. Khleif, and M. Abbood, “Velocity kinematics analysis and trajectory planning of 5 dof robotic arm,” Engineering and Technology Journal, vol. 38, 2020.

W. S. Cardozo and H. I. Weber, “A compact formulation for constant velocity joint kinematics,” Mechanism and Machine Theory, vol. 121, pp. 1–14, 2018, doi: 10.1016/j.mechmachtheory.2017.10.009.

S. Sakurai and S. Katsura, “Singularity-free 3-leg 6-dof spatial parallel robot with actuation redundancy,” IEEJ Journal of Industry Applications, vol. 13, 2024, doi: 10.1541/ieejjia.23003740.

Y. Liu et al., “Singularity Analysis and Solutions for the Origami Transmission Mechanism of Fast-Moving Untethered Insect-Scale Robot,” in IEEE Transactions on Robotics, vol. 40, pp. 777-796, 2024, doi: 10.1109/TRO.2023.3338949.

Y. Li and L. Wang, “Comprehensive research and analysis on obstacle–singularity–joint limit avoidance of redundant robot,” International Journal of Advanced Robotic Systems, vol. 21, 2024, doi: 10.1177/17298806241233910.

Y. Wang, Y. Liu, M. Leibold, M. Buss and J. Lee, “Hierarchical Incremental MPC for Redundant Robots: A Robust and Singularity-Free Approach,” in IEEE Transactions on Robotics, vol. 40, pp. 2128-2148, 2024, doi: 10.1109/TRO.2024.3370049.

D. Guo, J. Liu, S. Zheng, J. -P. Cai and P. Jiang, “Singularity-Free FixedTime Neuro-Adaptive Control for Robot Manipulators in the Presence of Input Saturation and External Disturbances,” in IEEE Access, vol. 12, pp. 1794-1804, 2024, doi: 10.1109/ACCESS.2023.3347807.

J. Xu, M. Gao, X. Feng, Z. Tu, S. Zhang, J. Tan, L. Tu, and R. Yao, “Dexterity distribution design for attitude adjustment of multi-joint robotics based on singularity-free workspace decomposition,” Mechanics Based Design of Structures and Machines, vol. 52, no. 3, 2024, doi: 10.1080/15397734.2022.2162541.

A. Yigit, D. Breton, and C. Gosselin, “Exploiting the kinematic redundancy of a (6 + 3)-degree-of-freedom parallel manipulator to produce unlimited rotation of the platform,” Journal of Mechanisms and Robotics, vol. 16, no. 7, 2024, 10.1115/1.4063407.

F. Dyba and A. Mazur, “Comparison of curvilinear parametrization methods and avoidance of orthogonal singularities in the path following task,” Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 17, no. 3, pp. 46–64, 2024, doi: 10.14313/JAMRIS/3-2023/22.

J. Erskine, S. Briot, I. Fantoni and A. Chriette, “Singularity Analysis of Rigid Directed Bearing Graphs for Quadrotor Formations,” in IEEE Transactions on Robotics, vol. 40, pp. 139-157, 2024, doi: 10.1109/TRO.2023.3324198.

Y. Fan, H. Zhan, Y. Li and C. Yang, “A Predefined Time Constrained Adaptive Fuzzy Control Method With Singularity-Free Switching for Uncertain Robots,” in IEEE Transactions on Fuzzy Systems, vol. 32, no. 5, pp. 2650-2662, 2024, doi: 10.1109/TFUZZ.2024.3357124.

O. A. Somefun, K. Akingbade, and F. Dahunsi, “The dilemma of pid tuning,” Annual Reviews in Control, vol. 52, pp. 65–74, 2021, doi: 10.1016/j.arcontrol.2021.05.002.

I. Cervantes and J. Alvarez-Ramirez, “On the pid tracking control of robot manipulators,” Systems and Control Letters, vol. 42, pp. 37–46, 2001, doi: 10.1016/S0167-6911(00)00077-3.

J. d. J. Rubio, P. Cruz, L. A. Paramo, J. A. Meda, D. Mujica and R. S. Ortigoza, “PID Anti-Vibration Control of a Robotic Arm,” in IEEE Latin America Transactions, vol. 14, no. 7, pp. 3144-3150, 2016, doi: 10.1109/TLA.2016.7587614.

R. P. Borase, D. K. Maghade, S. Y. Sondkar, and S. N. Pawar, “A review of pid control, tuning methods and applications,” International Journal of Dynamics and Control, vol. 9, pp. 818–827, 2021, doi: 10.1007/s40435- 020-00665-4.

A. M. El-Dalatony, T. Attia, H. Ragheb, and A. M. Sharaf, “Cascaded pid trajectory tracking control for quadruped robotic leg,” International Journal of Mechanical Engineering and Robotics Research, vol. 12, no. 1, pp. 40–47, 2023, doi: 10.18178/ijmerr.12.1.40-47.

J. Ohri, D. R. Vyas, and P. N. Topno, “Comparison of robustness of pid control and sliding mode control of robotic manipulator,” International Symposium on Devices MEMS, Intelligent Systems & Communication (ISDMISC), pp. 5–10, 2011.

H. R. Nohooji, A. Zaraki, and H. Voos, “Actor–critic learning based pid control for robotic manipulators,” Applied Soft Computing, vol. 151, 2024, doi: 10.1016/j.asoc.2023.111153.

R. G. David, I, “Pid control dynamics of a robotic arm manipulator with two degrees of freedom,” Control de Processos y Robotica, 2012.

Y. Pan, X. Li and H. Yu, “Efficient PID Tracking Control of Robotic Manipulators Driven by Compliant Actuators,” in IEEE Transactions on Control Systems Technology, vol. 27, no. 2, pp. 915-922, 2019, doi: 10.1109/TCST.2017.2783339.

N. T. M. Nguyet and D. X. Ba, “A neural flexible pid controller for task-space control of robotic manipulators,” Frontiers in Robotics and AI, vol. 9, 2023, doi: 10.3389/frobt.2022.975850.

L. Qiao, M. Zhao, C. Wu, T. Ge, R. Fan, and W. Zhang, “Adaptive pid control of robotic manipulators without equality/inequality constraints on control gains,” International Journal of Robust and Nonlinear Control, vol. 32, no. 18, pp. 9742–9760, 2022, doi: 10.1002/rnc.5849.

E. Sariyildiz, H. Yu, and K. Ohnishi, “A practical tuning method for the robust pid controller with velocity feed-back,” Machines, vol. 3, no. 3, pp. 208–222, 2015, doi: 10.3390/machines3030208.

A. J. Munoz-V ˜ azquez, F. Gaxiola, F. Mart ´ ´ınez-Reyes, and A. ManzoMart´ınez, “A fuzzy fractional-order control of robotic manipulators with pid error manifolds,” Applied Soft Computing Journal, vol. 83, 2019, doi: 10.1016/j.asoc.2019.105646.

L. Angel and J. Viola, “Fractional order pid for tracking control of a parallel robotic manipulator type delta,” ISA Transactions, vol. 79, pp. 172–188, 2018, doi: 10.1016/j.isatra.2018.04.010.

L. Angel and J. Viola, “Control performance assessment of fractionalorder pid controllers applied to tracking trajectory control of robotic systems,” WSEAS Transactions on Systems and Control, vol. 17, pp. 62– 73, 2022, doi: 10.37394/23203.2022.17.8.

Z. Dachang, D. Baolin, Z. Puchen, and C. Shouyan, “Constant force pid control for robotic manipulator based on fuzzy neural network algorithm,” Complexity, vol. 2020, 2020, doi: 10.1155/2020/3491845.

K. Shojaei, “A prescribed performance pid control of robotic cars with only posture measurements considering path curvature,” European Journal of Control, vol. 65, 2022, doi: 10.1016/j.ejcon.2022.100616.

L. Tian, “Intelligent self-tuning of pid control for the robotic testing system for human musculoskeletal joints test,” Annals of Biomedical Engineering, vol. 32, pp. 899–909, 2004, doi: 10.1023/B:ABME.0000030759.80354.e8.

P. Chotikunnan, R. Chotikunnan, A. Nirapai, A. Wongkamhang, P. Imura, and M. Sangworasil, “Optimizing membership function tuning for fuzzy control of robotic manipulators using pid-driven data techniques,” Journal of Robotics and Control (JRC), vol. 4, no. 2, pp. 128–140, 2023, doi: 10.18196/jrc.v4i2.18108.

M. S. Amiri and R. Ramli, “Intelligent trajectory tracking behavior of a multi-joint robotic arm via genetic–swarm optimization for the inverse kinematic solution,” Sensors, vol. 21, no. 9, 2021, doi: 10.3390/s21093171.

X. Xiang, C. Yu, L. Lapierre, J. Zhang, and Q. Zhang, “Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles,” International Journal of Fuzzy Systems, vol. 20, pp. 572–586, 2018, doi: 10.1007/s40815-017-0401-3.

Downloads

Published

2025-07-13

How to Cite

[1]
I. Siradjuddin, I. L. Fitria, G. Al Azhar, S. Riskitasari, F. Ronilaya, and R. P. Wicaksono, “Modeling and Control of an 8-Legged Stewart Platform Using Null-Space Control for Precise Motion Under Actuator Constraints”, J Robot Control (JRC), vol. 6, no. 4, pp. 1860–1871, Jul. 2025.

Issue

Section

Articles