Estimating SPAD, Nitrogen Concentration, and Chlorophyll Content in Rice Leaves using Calibrated Smartphone Digital Image
Abstract
Laboratory analysis is commonly used to determine nitrogen and chlorophyll content. However, smartphones can serve as rapid, mobile, and non-destructive tools for this purpose. An equation can be created to calculate nitrogen and chlorophyll content by analyzing color parameters from digital images of rice leaves. An examination was performed on 86 rice leaf samples from the maximum tillering and mature stages. Rice leaf photos were taken with a smartphone in natural outdoor lighting. Color calibration with Spydercheckr was needed to adjust for lighting conditions. Uncalibrated and calibrated image data were analyzed to determine RGB values converted into CIELAB color space. The L*, a*, and b* values had a significant correlation with SPAD parameters, nitrogen concentration, chlorophyll a, b, and total chlorophyll content. This connection was higher after image calibration. The study found that smartphone images could predict SPAD values with 87.9% to 92.3% precision, depending on color space. Using a smartphone digital picture of L* and a* values, N content could be estimated with 84.7% and 81.9% accuracy. Average accuracy for chlorophyll a, b, and total chlorophyll content was 65% to 76%. This study shows smartphone images can estimate rice leaf SPAD and nitrogen content.
Keywords
Full Text:
PDFReferences
Astika, I. W., & Khayati, N. N. (2019, June). Prediction of color level and chlorophyll content of corn (Zea mays L.) leaves by using mobile phone cameras. IOP Conference Series: Materials Science and Engineering, 557(1), 012029. https://doi.org/10.1088/1757-899X/557/1/012029
Bartolome, G. J. C., de Mesa, J. P. S., Adoña, J. A. C., & Al Eugene, L. T. (2020). Performance of dye-sensitized solar cells with natural dye from local tropical plants. Mindanao Journal of Science and Technology, 18(1).
Caballero, D., Calvini, R., & Amigo, J. M. (2019). Hyperspectral imaging in crop fields: precision agriculture. Data Handling in Science and Technology, 32,453-473. https://doi.org/10.1016/B978-0-444-63977-6.00018-3
Cruz, G. D. (2019). Nitrogen deficiency mobile application for rice plant through image processing techniques. International Journal of Engineering and Advanced Technology, 8(6), 2950-2955. https://doi.org/10.35940/ijeat.F8721.088619
Evans, J. R., & Clarke, V. C. (2019). The nitrogen cost of photosynthesis. Journal of Experimental Botany, 70(1), 7-15. https://doi.org/10.1093/jxb/ery366
Gabriel, J., Quemada, M., Alonso-Ayuso, M., Lizaso, J., & Martín-Lammerding, D. (2019). Predicting N Status in Maize with Clip Sensors: Choosing Sensor, Leaf Sampling Point, and Timing. Sensors, 19(18), 3881. https://doi.org/10.3390/s19183881.
Ibrahim, N. U. A., Abd Aziz, S., Jamaludin, D., & Harith, H. H. (2021). Development of smartphone-based imaging techniques for the estimation of chlorophyll content in lettuce leaves. Food Research, 5(1), 33-38. https://doi.org/10.26656/fr.2017.5(S1).036
Mu, X., & Chen, Y. (2020). The physiological response of photosynthesis to nitrogen deficiency. Plant physiology and biochemistry: PPB, 158, 76-82. https://doi.org/10.1016/j.plaphy.2020.11.019.
Schneider, C. A., Rasband, W.S., & Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
Shrivastava, V. K., & Pradhan, M. K. (2021). Rice plant disease classification using color features: a machine learning paradigm. Journal of Plant Pathology, 103, 17-26. https://doi.org/10.1007/s42161-020-00683-3
Silalahi, N. H., Yudha, R. O., Dwiyanti, E. I., Zulvianita, D., Feranti, S. N., & Yustiana, Y. (2019). Government policy statements related to rice problems in Indonesia. Journal of Biological Science, Technology, and Management, 1(1), 35-41
Souza, W. S., de Oliveira, M. A., de Oliveira, G. M., de Santana, D. P., & de Araujo, R. E. (2018). Self-referencing method for relative color intensity analysis using mobile-phone. Optics and Photonics Journal, 8(07), 264. https://doi.org/10.4236/opj.2018.87022
Stirbet, A., Lazár, D., Guo, Y., & Govindjee, G. (2020). Photosynthesis: basics, history and modelling. Annals of Botany, 126(4), 511-537. https://doi.org/10.1093/aob/mcz171
Subedi, P., Sah, S. K., Marahattha, S., Panta, S., & Shrestha, J. (2018). Nitrogen use efficiency in dry direct seeded rice under LCC based nitrogen management. ORYZA-An International Journal on Rice, 55(4), 590-595. https://doi.org/10.5958/2249-5266.2018.00069.3
Sulistyorini, S., & Sunaryanto, L. T. (2020). Dampak Efisiensi Usahatani Padi Terhadap Peningkatan Produktvitas. Jambura Agribusiness Journal, 1(2), 43-51. https://doi.org/10.37046/jaj.v1i2.2680
Sunoj, S., Igathinathane, C., Saliendra, N., Hendrickson, J., & Archer, D. (2018). Color calibration of digital images for agriculture and other applications. ISPRS journal of photogrammetry and remote sensing, 146, 221-234. https://doi.org/10.1016/j.isprsjprs.2018.09.015
Wang, L., Chen, S., Li, D., Wang, C., Jiang, H., Zheng, Q., & Peng, Z. (2021). Estimation of paddy rice nitrogen content and accumulation both at leaf and plant levels from UAV hyperspectral imagery. Remote Sensing, 13(15), 2956. https://doi.org/10.3390/rs13152956
Wang, Y. P., Chang, Y. C., & Shen, Y. (2022). Estimation of nitrogen status of paddy rice at vegetative phase using unmanned aerial vehicle based multispectral imagery. Precision Agriculture, 23(1), 1-17. https://doi.org/10.1007/s11119-021-09823-w
Wu, Y., Al-Jumaili, S. J., Al-Jumeily, D., & Bian, H. (2022). Prediction of the Nitrogen Content of Rice Leaf Using Multi-Spectral Images Based on Hybrid Radial Basis Function Neural Network and Partial Least-Squares Regression. Sensors, 22(22), 8626. https://doi.org/10.3390/s22228626
Zepka, L. Q., Jacob-Lopes, E., & Roca, M. (2019). Catabolism and bioactive properties of chlorophylls. Current Opinion in Food Science, 26, 94-100. https://doi.org/10.1016/j.cofs.2019.04.004
Zhang, K., Liu, X., Ma, Y., Zhang, R., Cao, Q., Zhu, Y., Cao, W., & Tian, Y. (2019). A Comparative Assessment of Measures of Leaf Nitrogen in Rice Using Two Leaf-Clip Meters. Sensors, 20(1),175 https://doi.org/10.3390/s20010175.
DOI: https://doi.org/10.18196/pt.v12i2.20553
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Valensi Kautsar, Kuni Faizah, Arief Ika Uktoro, Lutfiatun Khasanah, Filiphus Filiphus
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Editorial Office
Planta Tropika
Department of Agrotechnology, Faculty of Agriculture, Universitas Muhammadiyah Yogyakarta
Jl. Brawijaya, Tamantirto, Kasihan, Bantul, D.I. Yogyakarta, Indonesia
Phone: +62 274 387656, Ext.: 224 / +62 81329320575
Email: plantatropika@umy.ac.id
E-ISSN: 2528-7079
p-ISSN: 0216-499X
Planta Tropika is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.